giúp tôi câu này với tìm giá trị nhỏ nhất của biểu thức A=x(x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
\(P=3b-2\sqrt{ab}+\frac{a}{3}+\frac{2a}{3}-2\sqrt{a}+\frac{3}{2}-\frac{1}{2}\)
\(P=\left(\sqrt{3b}-\sqrt{\frac{a}{3}}\right)^2+\left(\sqrt{\frac{2}{3}a}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Đẳng thức xảy ra (Bạn tự giải)
(nhớ k để làm tiếp)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
\(\left(x-3\right)^2\ge0\) với mọi x
\(\left(y-1\right)^2\ge0\) với mọi y
=>\(\left(x-3\right)^2+\left(y-1\right)^2\ge0\) với mọi x;y
=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x;y
Dấu "=" xảy ra
<=>\(\left(x-3\right)^2=\left(y-1\right)^2=0\Leftrightarrow\int^{x-3=0}_{y-1=0}\Leftrightarrow\int^{x=3}_{y=1}\)
Vậy GTNN của \(\left(x-3\right)^2+\left(y-1\right)^2=5\) tại x=3;y=1
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi