K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Đặt \(Q=n^6+n^4-2n^2\)

\(\Rightarrow Q=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left[\left(n^4-1\right)+\left(n^2-1\right)\right]\)

\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+\left(n^2-1\right)\right]\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)

\(=n\cdot n\left(n+1\right)\left(n-1\right)\left(n^2+2\right)\)

* Nếu n chẵn. Đặt n = 2k (với k thuộc Z)

\(\Rightarrow Q=4k^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)

\(=4k^2\left(2k-1\right)\left(2k+1\right)\cdot2\left(2k^2+1\right)\)

\(=8k^2\left(2k^2+1\right)\left(2k+1\right)\left(2k-1\right)⋮8\)

* Nếu n lẻ. Đặt n = 2k+1 (với k thuộc Z)

\(\Rightarrow\)\(Q = (2k + 1)^2 .2k (2k + 2)(4k^2 + 4k + 1 + 2) \)

\(= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) \)

\(k\left(k+1\right)⋮2\) \(\Rightarrow Q⋮8\)

Vậy \(Q⋮8\)

** Nếu \(n⋮3\)

\(\Rightarrow n^2⋮9\Rightarrow Q⋮9\)

** Nếu \(n⋮̸3\)

\(\left(n-1\right)n\left(n+1\right)⋮3\)

\(n⋮̸3\Rightarrow n^2+2⋮3\)

\(\Rightarrow Q⋮9\)

\(\left(8;9\right)=1\Rightarrow Q⋮72\)

8 tháng 8 2017

ặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

31 tháng 8 2017

Đặt A = \(n^6+n^4-2n^2=n^2\left(n^4++n^2-2\right)\)

=\(n^2\left(n^4-1+n^2-1\right)\)

=\(n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)

=\(n^2\left(n^2-1\right)\left(n^2+2\right)\)

+ Nếu n chẳn ta có n = 2k (k thuộc N)

A=\(4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)\)

Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)

A=\(\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)

=\(4k\left(k+1\right)\left(2k+1\right)^2\left(4k^2+4k+3\right)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).

Suy ra:\(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

Đặt \(A=n^6+n^4-2n^2\)

\(\Leftrightarrow A=n^2(n^2-1)(n^2+2)\)

Ta chứng minh \(A\vdots 9\)

\(\bullet\) Nếu \(n\equiv 0\pmod 3\Leftrightarrow n\vdots 3\Rightarrow n^2\vdots 9\Rightarrow A\vdots 9\)

\(\bullet\) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\)

Do đó, \(\left\{\begin{matrix} n^2-1\equiv 0\pmod 3\\ n^2+2\equiv 0\pmod 3\end{matrix}\right.\Rightarrow (n^2-1)(n^2+1)\vdots 9\Rightarrow A\vdots 9\)

Từ hai TH trên suy ra \(A\vdots 9(1)\)

Ta chứng minh \(A\vdots 8\)

Viết lại: \(A=n^2(n-1)(n+1)(n^2+2)\)

\(\bullet n=4k\Rightarrow n\vdots 4\rightarrow n^2\vdots 8\Rightarrow A\vdots 8\)

\(\bullet n=4k+1\Rightarrow n-1=4k\vdots 4\)\(n+1=4k+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+2\Rightarrow n\vdots 2\rightarrow n^2\vdots 4\)\(n^2+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+3\Rightarrow n-1=4k+2\vdots 2\)\(n+1=4k+4\vdots 4\Rightarrow A\vdots 8\)

Từ các TH trên suy ra \(A\vdots 8(2)\)

Từ \((1),(2)\) mà $8,9$ nguyên tố cùng nhau nên \(A\vdots 72\) (đpcm)

2 tháng 10 2015

3n+2-2n+2+3n-2n

= ( 3n+2+3n)-(2n+2+2n)

= 3n(32+1)-2n(22+1)

= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10

b) 7n+4-7n=7n(74-1)=7n.2400

Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30

Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N

c) 62n+3n+2+3n=22n.3n+3n(32+1)

=22n.32n+3n.11 chia het cho 11

đ) câu hỏi tương tự nhé

l-i-k-e mình nhé

10 tháng 8 2017

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

10 tháng 8 2017

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)