K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Từ Từ đã nha!!

23 tháng 12 2018

\(\text{Ta có: }x=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\frac{3-\sqrt{5}}{\sqrt{9-5}}=\frac{3-\sqrt{5}}{2}.\)

\(A=x^5-6x^4+12x^3-4x^2-13x+2020\)

\(=\left(x^5-3x^4+x^3\right)-\left(3x^4-9x^3+3x^2\right)+\left(2x^3-6x^2+2x\right)+\left(5x^2-15x+5\right)+2015\)

\(=x^3\left(x^2-3x+1\right)-3x^2\left(x^2-3x+1\right)+2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)+2015\)

\(=\left(x^2-3x+1\right)\left(x^3-3x^2+2x+5\right)+2015\)

Thay x vào A ta có: 

\(A=\left[\left(\frac{3-\sqrt{5}}{2}\right)^2-3.\frac{3-\sqrt{5}}{2}+1\right]\left(.....\right)+2015\)

\(=\left(\frac{14-6\sqrt{5}}{4}-\frac{9-3\sqrt{5}}{2}+1\right)\left(....\right)+2015\)

\(=0\cdot\left(......\right)+2015=2015\)

Vậy.....

NV
21 tháng 7 2021

c.

ĐLXĐ: \(x\ge-\dfrac{1}{3}\)

\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)

Đặt \(\sqrt{3x+1}=t\ge0\)

\(\Rightarrow-t^2+t+4x^2-10x+6=0\)

\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
21 tháng 7 2021

a.

ĐKXĐ: \(x\ge-\dfrac{5}{4}\)

\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)

\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)

\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

15 tháng 10 2021
28 tháng 10 2021

h: \(\sqrt{18x}+\sqrt{32x}-14=0\)

\(\Leftrightarrow7\sqrt{2x}=14\)

hay x=2