K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

Áp dụng BĐT Svácxơ, ta có:

\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)

Dấu "=" \(\Leftrightarrow a=b=\sqrt{2}\)

27 tháng 4 2023

Với \(ab+bc+ca=1\) và a,b,c>0 ta có:

\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:

\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)

Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)

\(\Rightarrow P=2\left(a+b+c\right)\)

\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)

\(\Rightarrow P\ge2\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

Vậy \(MinP=2\sqrt{3}\)

15 tháng 1 2022

Áp dụng BĐT Bunyakovsky, ta có:

\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy, ta có:

\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)

Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy GTNN của A là 1 (khi a = b = c = 1).

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow \frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Do đó:
\(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\)

Áp dụng BĐT AM-GM:

\(ab+bc+ac+\frac{9}{2(a+b+c)}=\frac{ab+bc+ac}{2}+\frac{ab+bc+ac}{2}+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{9(ab+bc+ac)^2}{8(a+b+c)}}\)

Theo một kết quả quen thuộc của BĐT AM-GM:

\((ab+bc+ac)^2\geq 3abc(a+b+c)\)

Thay \(abc=1\Rightarrow (ab+bc+ac)^2\geq 3(a+b+c)\)

Do đó: \(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{27}{8}}=\frac{9}{2}\)

Vậy \(P_{\min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)

21 tháng 5 2018

ap dung bdt cosi ta co : \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge3\sqrt[3]{\dfrac{abc}{\left(abc\right)^2}}=3\) (1)

ta lai co \(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)^2}\ge\dfrac{9.3}{2.3^2}=\dfrac{3}{2}\) (2)

tu (1) vs (2) \(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{9}{2\left(a+b+c\right)}\ge3+\dfrac{3}{2}=\dfrac{9}{2}\)

dau "=" xay ra khi \(a=b=c=1\)

xl ! may mk bi hu nen khong viet dau dc bn thong cam

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Theo hệ quả quen thuộc của BĐT AM-GM thì:

\((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)

Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)

hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)

\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Rightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\)

\(\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)

Hoàn toàn tương tự với các phân thức còn lại

\(\Rightarrow \text{VT}=\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$