cho a,b,c,d khác 0 sao cho b2=ac,c2=bd và b3+27c3+8d3 khác 0
cm:a/d=a3+27b3+8c3/b3+27c3+8d3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^3+b^3=2(c^3-8d^3)$
$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$
$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$
Khi đó:
$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$
$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:
$a^3+b^3+c^3+d^3\vdots 3$
$3ab(a+b)\vdots 3$
$3cd(c+d)\vdots 3$
$3(a+b)(c+d)(a+b+c+d)\vdots 3$
Vậy:
$(a+b+c+d)^3\vdots 3$
$\Rightarrow a+b+c+d\vdots 3$
Ta có:\(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b}{c}=\frac{a}{b}\\\frac{c}{d}=\frac{b}{c}\end{cases}}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{27b^3}{27c^3}=\frac{8c^3}{8d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^3}{b^3}=\frac{27b^3}{27c^3}=\frac{8c^3}{8d^3}=\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\left(đpcm\right)\)