Giải hệ phương trình \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy=1\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))
Đặt \(\dfrac{x}{x+1}\) là A
\(\dfrac{y}{y+1}\) là B
Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)
Giải HPT (1) ta được A= \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)
+Với A=\(\dfrac{7}{5}\) ta có:
\(\dfrac{x}{x+1}=\dfrac{7}{5}\)
<=>\(5x=7x+7\)
<=>-2x=7
<=> x=\(-\dfrac{7}{2}\)
+Với B = \(-\dfrac{4}{5}\) ta có:
\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)
<=>5y=-4y-4
<=>9y=-4
<=>y=\(-\dfrac{4}{9}\)
Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)
Lời giải:
ĐK: $x,y>0$
PT$(2)\Rightarrow \frac{1}{\sqrt{x}}-x=y+\frac{1}{\sqrt{y}}>0$
$\Rightarrow 1-x\sqrt{x}>1\Rightarrow 1>x$
Quay lại PT $(1)$:
$2x^2=xy+1$
Nếu $y\geq x$ thì: $2x^2=xy+1\geq x^2+1\Leftrightarrow x^2\geq 1\Rightarrow x\geq 1$ (vô lý vì $x<1$)
$\Rightarrow 0<y<x$
Khi đóTại PT$(2)$: $x+y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}<0$ (vô lý vì $x,y>0$)
Vậy HPT vô nghiệm
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
Đk: \(x\ne0,y\ne-1\)
\(\left\{{}\begin{matrix}2x+3y=xy+5\left(1\right)\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1+x=x\left(y+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)
\(\Rightarrow2x+3y=y+1+5\)
\(\Leftrightarrow x=3-y\) thay vào (1) có:
\(2\left(3-y\right)+3y=\left(3-y\right)y+5\)
\(\Leftrightarrow y^2-2y+1=0\)
\(\Leftrightarrow y=1\) \(\Rightarrow x=2\)(tm)
Vậy (x;y)=(2;1)
Thay \(x=\dfrac{3}{4}y\) vào phương trình dưới, ta có:
\(\dfrac{1}{2}\left(\dfrac{3}{4}y+3\right)\left(y-2\right)-\dfrac{1}{2}.\dfrac{3}{4}y^2=9\)
\(\Leftrightarrow\dfrac{3}{8}y^2-\dfrac{3}{4}y+\dfrac{3}{2}y-3-\dfrac{3}{8}y^2=9\\ \Leftrightarrow\dfrac{3}{4}y=12\\ \Leftrightarrow y=18\Rightarrow x=12\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(12;18\right)\)
ĐKXĐ : \(x;y\ne0\)
Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)
\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)
\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1)
Kết hợp \(x^2+xy-y^2=5\) (2)
ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\)
\(\Leftrightarrow16x^2-29xy-6y^2=0\)
\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)
Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được
\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)
\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại)
Khi x = 2y thay vào (2) ta được
4y2 + 2y2 - y2 = 5
\(\Leftrightarrow y=\pm1\) (tm)
Với y = 1 => x = 2
y = -1 => x = -2
Vậy (x;y) = (2;1) ; (-2;-1)
1.
ĐKXĐ: ....
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-1=xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x-\dfrac{1}{x}=y\end{matrix}\right.\)
Trừ vế cho vế: \(\Rightarrow x=\dfrac{1}{y}\Rightarrow xy=1\)
Thay xuống pt dưới: \(2x^2-2=0\Leftrightarrow x^2=1\Leftrightarrow...\)
2.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}4x^3+1=\dfrac{3}{y}\\3x-1=\dfrac{4}{y^3}\end{matrix}\right.\)
Cộng vế với vế:
\(4x^3+3x=4\left(\dfrac{1}{y}\right)^3+3\left(\dfrac{1}{y}\right)\)
\(\Leftrightarrow4\left(x^3-\dfrac{1}{y^3}\right)+3\left(x-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow4\left(x-\dfrac{1}{y}\right)\left(x^2+\dfrac{x}{y}+y^2\right)+3\left(x-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{y}\right)\left(4x^2+\dfrac{4x}{y}+\dfrac{4}{y^2}+3\right)=0\)
\(\Leftrightarrow x-\dfrac{1}{y}=0\Leftrightarrow y=\dfrac{1}{x}\)
Thế vào pt đầu:
\(4x^3+1=3x\)
\(\Leftrightarrow4x^3-3x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=xy+3y-1\\\left(x+y\right)\left(x^2+1\right)=x^2+y+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2+\left(x-3\right)y+x^2+1=0\\x^3+x+x^2y-x^2-1=0\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow y^2-\left(x^2-x+3\right)y-x^3+2x^2-x+2=0\)
\(\Delta=\left(x^2-x+3\right)^2-4\left(-x^3+2x^2-x+2\right)=\left(x^2+x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{x^2-x+3+x^2+x-1}{2}=x^2+1\\y=\dfrac{x^2-x+3-x^2-x+1}{2}=-x+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\left[{}\begin{matrix}x+x^2+1=2\\x-x+2=\dfrac{x^2+1-x+2}{x^2+1}\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ : \(x;y\ne0\)
Khi đó \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-\dfrac{x-y}{xy}\\2x^2-xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(\dfrac{xy+1}{xy}\right)=0\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\xy=-1\end{matrix}\right.\\2x^2-xy=1\end{matrix}\right.\)
Với x = y thì 2x2 - xy = 1
<=> 2x2 - x2 = 1
<=> x2 = 1
<=> x = \(\pm1\) (tm)
Khi x = -1 => y = -1
x = 1 => y = 1
Với xy = - 1 thì 2x2 - xy = 1
<=> 2x2 - (-1) = 1
<=> x2 = 0
<=> x = 0 (ktm)
Vậy hệ có 2 nghiệm (x;y) = (1; 1) ; (-1 ; -1)