K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

Sửa đề: DO cắt AC tại E

a) Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm(gt)

DC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: DA=DC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: DA=DC(Cmt)

nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DO là đường trung trực của AC

\(\Leftrightarrow DO\perp AC\)

mà DO cắt AC tại E(gt)

nên \(DO\perp AC\) tại E

Xét tứ giác CEOH có 

\(\widehat{CEO}\) và \(\widehat{CHO}\) là hai góc đối

\(\widehat{CEO}+\widehat{CHO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: CEOH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm(gt)

DC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: DB=DC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: DB=DC(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD\(\perp\)BC(đpcm)

b) Xét (O) có 

ΔEAB nội tiếp đường tròn(E,A,B cùng thuộc đường tròn (O))

AB là đường kính(gt)

Do đó: ΔEAB vuông tại E(Định lí)

\(\Leftrightarrow\)BE\(\perp\)AE tại E

hay BE\(\perp\)DA

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBA vuông tại B có BE là đường cao ứng với cạnh huyền DA, ta được:

\(DE\cdot DA=DB^2\)(1)

Ta có: DO\(\perp\)BC(cmt)

mà DO cắt BC tại F(gt)

nên BF\(\perp\)DO tại F

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBO vuông tại B có BF là đường cao ứng với cạnh huyền DO, ta được:

\(DF\cdot DO=DB^2\)(2)

Từ (1) và (2) suy ra \(DF\cdot DO=DE\cdot DA\)(đpcm)

1: Xét ΔBDA có

O là trung điẻm của AB

OI//BD

=>I là trung điểm của AD

ΔOAD cân tại O

mà OI là trung tuyến

nên OI vuông góc AD và OI là phân giác của góc AOD

2: Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC
OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

a) Xét tứ giác SAOB có 

\(\widehat{SAO}+\widehat{SBO}=180^0\left(90^0+90^0=180^0\right)\)

nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

SA là tiếp tuyến có A là tiếp điểm(gt)

SB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: SA=SB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: SA=SB(cmt)

nên S nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra SO là đường trung trực của AB

hay SO\(\perp\)AB(Đpcm)

28 tháng 6 2021

b) đề phải là \(SA^2=SD.SE\) chứ SD không bằng SE sao \(SD^2=SD.SE\) được

Vì AE là đường kính \(\Rightarrow\angle ADE=90\) mà \(\angle SAE=90\)

\(\Rightarrow\Delta SAE\) vuông tại A có AD là đường cao

\(\Rightarrow SA^2=SD.SE\)

c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE

\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90\Rightarrow\angle OIS=\angle OBS=90\)

\(\Rightarrow OIBS\) nội tiếp mà SAOB nội tiếp (câu a)

\(\Rightarrow O,I,A,S,B\) cùng thuộc 1 đường tròn

\(\Rightarrow AIBS\) nội tiếp \(\Rightarrow\angle AIS=\angle ABS=\angle SAB\) (\(\Delta SAB\) cân tại S)

Xét \(\Delta SAK\) và \(\Delta SIA:\) Ta có: \(\left\{{}\begin{matrix}\angle SIA=\angle SAK\\\angle ISAchung\end{matrix}\right.\)

\(\Rightarrow\Delta SAK\sim\Delta SIA\left(g-g\right)\Rightarrow\dfrac{SA}{SI}=\dfrac{SK}{SA}\Rightarrow SA^2=SK.SI\)

mà \(SA^2=SD.SE\Rightarrow SD.SE=SK.SI\)

d) AB cắt OI tại F'

Vì AE là đường kính \(\Rightarrow\angle ABE=90\Rightarrow F'BE=90\)

\(\Rightarrow\angle F'BE=\angle F'IE\Rightarrow F'BIE\) nội tiếp \(\Rightarrow\angle ABI=\angle F'EI\)

mà \(\angle ABI=\angle ASI\) (AIBS nội tiếp) \(=\angle ASE\)

\(\Rightarrow\angle F'EI+\angle AES=\angle ASE+\angle AES=90\)

\(\Rightarrow\angle F'EO=90\Rightarrow EF'\) là tiếp tuyến \(\Rightarrow\) đpcm

undefined

 

 

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
5 tháng 6 2021

a) Ta có: \(\angle SAO+\angle SBO=90+90=180\Rightarrow SAOB\) nội tiếp

Vì SA,SB là tiếp tuyến \(\Rightarrow SA=SB\) và SO là phân giác \(\angle BSA\Rightarrow SO\bot AB\)

b) Xét \(\Delta SBD\) và \(\Delta SEB:\) Ta có: \(\left\{{}\begin{matrix}\angle SBD=\angle SEB\\\angle BSEchung\end{matrix}\right.\)

\(\Rightarrow\Delta SBD\sim\Delta SEB\left(g-g\right)\Rightarrow\dfrac{SB}{SE}=\dfrac{SD}{SB}\Rightarrow SB^2=SD.SE\)

c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE

\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90=\angle OBS\Rightarrow\) OIBS nội tiếp

\(\Rightarrow O,I,B,S,A\) cùng thuộc 1 đường tròn

\(\Rightarrow\) BIAS nội tiếp \(\Rightarrow\angle BIS=\angle BAS=\angle ABS\)

Xét \(\Delta SBK\) và \(\Delta SIB:\) Ta có: \(\left\{{}\begin{matrix}\angle SBK=\angle SIB\\\angle BSIchung\end{matrix}\right.\)

\(\Rightarrow\Delta SBK\sim\Delta SIB\left(g-g\right)\Rightarrow\dfrac{SB}{SI}=\dfrac{SK}{SB}\Rightarrow SB^2=SI.SK\) 

mà \(SB^2=SD.SE\Rightarrow SD.SE=SI.SK\)

d) Ta có: \(\angle SIB=\angle SBK=\angle BEA\Rightarrow90-\angle SIB=90-\angle BEA\)

\(\Rightarrow\angle FIB=\angle FEB\Rightarrow FBIE\) nội tiếp

\(\Rightarrow\angle FBE=\angle FIE=90\Rightarrow FB\bot BE\)

mà \(AB\bot BE\left(\angle ABE=90\right)\Rightarrow\) A,B,F thẳng hàngundefined

5 tháng 6 2021

bạn ơi cái phần mềm bn dùng vẽ hình là gì vậy?