Tìm ba số a, b, c biết: \(\sqrt{\overline{abc}}=\left(a+b\right)\sqrt{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16+bc-4b-4c\right)}\)
\(=\sqrt{a\left(bc+4a+4\sqrt{abc}\right)}=\sqrt{abc+4a^2+4a\sqrt{abc}}\)
\(=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự ta cũng co:
\(\hept{\begin{cases}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{cases}}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}=16\Rightarrow16-4b-4c=4a+4\sqrt{abc}\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự : \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\); \(\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Bạn tham khảo bài số 3:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến