Tìm a để đa thức 2x^3-3x^2+x+a chia hết cho đa thức x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)
<=> \(a=2\)
Vậy a = 2
Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)
<=> \(a=66\)
Vậy a = 66
2x3-3x2+x+a | x+2
------------------|-------------
2x3-3x2 | 2x2-7x+15
2x2+4x2
-7x2+x
-7x2-14x
15x+a
15x+30
Để 2x^3-3x^2+x+a chia hết cho đa thức x+2 thì
15x+a=15x+30
<=>a=30
Vậy a= 30
gọi đa thức thứ 1 là A(x), thứ 2 là B(x), A(x):B(x)=Q(x)
-> A(x)=B(x).Q(x). Thay x= -2 có B(x)=0 -> A(-2)=0
2.(-2)^3 - 3.(-2)^2 + (-2) + a = 0
-30 + a = 0
a = 30
\(\Leftrightarrow2x^3-3x^2+x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow2\left(-27\right)-3\cdot9-3+a=0\\ \Leftrightarrow-54-27-3+a=0\\ \Leftrightarrow-84+a=0\\ \Leftrightarrow a=84\)
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25
Giả sử thương của phép chia này là bx2 + cx + d thì ta có
2x3 - 3x2 + x + a = (x + 2)(bx2 + cx + d)
<=> 2x3 - 3x2 + x + a = bx3 + x2(2b + c) + x(2c + d) + 2d
=> b = 2; c = -7; d = 15, a = 30
Vậy a = 30
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Áp dụng định lý Bezout:
Đa thức \(2x^3-3x^2+x+a\)chia hết cho x + 2
\(\Leftrightarrow f\left(-2\right)=0\)
\(\Leftrightarrow2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Leftrightarrow-16-12-2+a=0\)
\(\Leftrightarrow-30+a=0\Leftrightarrow a=30\)
Vậy a = 30 thì \(2x^3-3x^2+x+a\)chia hết cho x + 2