Cho hình thang cân ABCD ( AB // CD ). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Đoạn thẳng MN, NP lần lượt là các đường trung bình của tam giác nào? Vì sao?
b) Chứng minh MP vuông góc với NQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của DC
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy
Bạn tự vẽ hình
a)*ta có M là trung điểm của AB
N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác ABC
*ta có N là trung điểm của BC
P là trung điểm của DC
Suy ra : NP là đường trung bình của tam giác BCD
b)ta có Q là trung điểm của AD
P là trung điểm của DC
Suy ra PQ là đường trung bình của tam giác ADC
=>PQ song song với AC;PQ=\(\frac{AC}{2}\)
mà MN song song với AC;MN=\(\frac{AC}{2}\)(MN là đường trung bình của tam giác ABC)
nên: PQ song song MN;PQ=MN
Suy ra MNPQ là hình binh hành(1)
ta lại có : AD=BC(ABCD là hình thang cân)
=>AQ=BN=QD=NC(Q,N lần lượt là trung điểm của AD,BC)
Xét tam giác MNB và tam giác MQA
BN=AQ (chứng minh trên)
MB=MA(M là trung điểm của AB)
góc MAQ=góc MBN
Suy ra tam giác MNB=tam giác MQA(c-g-c)
=>MQ=MN( 2 cạnh tương ứng )(2)
Từ (1) và (2) suy ra :
MNPQ là hình thoi
=> MP vuông góc NQ