y / (1/2) + y / (1/8) + y / (1/8) = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(-\dfrac{1}{3}< \dfrac{x}{36}\Rightarrow-36< 3x\Rightarrow x>-12\)
\(\dfrac{y}{18}< \dfrac{-1}{8}\Rightarrow8y< -18\Rightarrow y< -\dfrac{18}{8}< -2\) (do y là số nguyên )
\(\Rightarrow2y< -4\)
\(\dfrac{x}{36}< \dfrac{y}{18}\Rightarrow18x< 36y\Rightarrow x< 2y\)
\(\Rightarrow-12< x< -4\)
\(\Rightarrow x\in\left\{-11;-10;....;-3;-4\right\}\)
\(\Rightarrow y\in\left\{-11;-10;...;-3;-4\right\}\)
Vì x;y thuộc n có : 8.5 =40 > 36 -> (x-2010)^2 \(\le\) 4
- > x-2010 = 4; 1 (x thuộc n mè ) -> tìm đc x ; y
`@` `\text {Ans}`
`\downarrow`
`1,`
\((y-5)(y+8)-(y+4)(y-1)\)
`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`
`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`
`= y^2+8y-5y-40 - y^2+y-4y+4`
`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`
`= -36`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`2,`
\(y^4-(y^2+1)(y^2-1)\)
`= y^4 - [y^2(y^2-1)+y^2-1]`
`= y^4- (y^4-y^2 + y^2-1)`
`= y^4-(y^4-1)`
`= y^4-y^4+1`
`= 1`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`3,`
\(x(y-z) + y(z-x) +z(x-y)\)
`= xy-xz + yz - yx + zx-zy`
`= (xy-yx) + (-xz+zx) + (yz-zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`4,`
\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)
`= xy+xz-xyz - yz - yx + yxz + zy - zx`
`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`5,`
\(x(2x+1)-x^2(x+2)+x^3-x+3\)
`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`
`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`
`= 3`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`6,`
\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)
`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`
`= -3x^3 + 3x^2 + 16`
Bạn xem lại đề bài.
`\text {#KaizuulvG}`
( 2 x y + 2/15 ) x 3 = 4/5
( 2 x y + 2/15 ) = 4/5 : 3
( 2 x y + 2/15 ) = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 :2
y = 1/15
(2 x y + 2/15) x 3 = 4/5
2 x y + 2/15) = 4/5 : 3
2 x y + 2/15 = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 : 2
y = 1/15
7/9 x (2 - 1/3 x y) = 14/15
(2 - 1/3 x y) = 14/15 : 7/9
(2 - 1/3 x y) = 6/5
2 - y = 6/5 x 1/3
2 - y = 2/5
y = 2/5 + 2
y = 12/5
4/21 + 5 x y - 8/7 = 1/3
4/21 + 5 x y = 1/3 + 8/7
4/21 + 5 x y = 31/21
5 x y = 31/21 - 4/21
5 x y = 9/7
y = 9/7 : 5
y = 9/35
7/12 x y - 3/12 x y = 5
y x (7/12 - 3/12) = 5
y x 1/3 = 5
y = 5 : 1/3
y = 15
Bài 1:
Tổng của 2 số là
\(36\times2=72\)
Số lớn là
\(72-17=55\)
Bài 2:
a) \(4567+y\div34=10987\)
\(y\div34=10987-4567\)
\(y\div34=6420\)
\(y=6420\times34\)
\(y=218280\)
b) \(\dfrac{4}{3}+\dfrac{1}{2}\div y=2\)
\(\dfrac{1}{2}\div y=2-\dfrac{4}{3}\)
\(\dfrac{1}{2}\div y=\dfrac{2}{3}\)
\(y=\dfrac{1}{2}\div\dfrac{2}{3}\)
\(y=\dfrac{3}{4}\)
Bài 3:
a) \(\dfrac{2}{5}\times\dfrac{2}{5}+\dfrac{9}{8}\div3=\dfrac{4}{25}+\dfrac{9}{8}\times\dfrac{1}{3}=\dfrac{4}{25}+\dfrac{3}{8}=\dfrac{107}{200}\)
b) \(2-\left(\dfrac{1}{7}\times4+\dfrac{5}{21}\right)=2-\left(\dfrac{4}{7}+\dfrac{5}{21}\right)=2-\dfrac{17}{21}=\dfrac{25}{21}\)
Bài 1 : Gọi a là số lớn, b là số bé, theo đề bài ta có :
(a+b):2=36⇒a+b=72
mà b=17
Nên a=72-17=55
Bài 2 :
a) 4567+y:34=10987
⇒ y:34=10987-4567
⇒ y:34=6420
⇒ y=6420x34
⇒ y=218280
b) \(\dfrac{4}{3}+\dfrac{1}{2}:y=2\)
\(\Rightarrow\dfrac{1}{2}:y=2-\dfrac{4}{3}\)
\(\Rightarrow\dfrac{1}{2}:y=\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}:\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}x\dfrac{3}{2}\)
\(\Rightarrow y=\dfrac{3}{4}\)
Bài 3 :
\(\dfrac{2}{5}x\dfrac{2}{5}+\dfrac{9}{8}:3=\dfrac{4}{25}+\dfrac{9}{8}x\dfrac{1}{3}=\dfrac{4}{25}+\dfrac{3}{8}\)
= \(\dfrac{4x8}{25x8}+\dfrac{25x3}{25x8}=\dfrac{32}{200}+\dfrac{75}{200}=\dfrac{107}{200}\)
\(2-\left(\dfrac{1}{7}x4+\dfrac{5}{21}\right)=2-\left(\dfrac{4}{7}+\dfrac{5}{21}\right)=2-\left(\dfrac{12}{21}+\dfrac{5}{21}\right)=2-\dfrac{17}{21}=\dfrac{42}{21}-\dfrac{17}{21}=\dfrac{25}{21}\)
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
Tỷ lệ giữa x,y đúng bằng x(2) chia y(2) đó: bằng 4/3 ý, chắc đề hỏi giữa x(1) và x(2)
Ta có: \(\frac{x_1}{x_2}=\frac{y_2}{y_1}=\frac{2x_1}{2x_2}=\frac{3y_2}{3y_1}=\frac{2x_1-3y_2}{2.\left(-6\right)-3\left(-8\right)}=\frac{36}{12}=3\)
mk lm 1 bài còn lại bn lm tương tự nha :
a) điều kiện xác định : \(x\ge0;y\ge1\)
đặc \(a=\sqrt{x};b=\sqrt{y-1}\)
\(\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}a+2b=5\\4a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
ta có : \(a=1\Rightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tmđk\right)\) ; \(b=2\Rightarrow\sqrt{y-1}=2\Leftrightarrow y=5\left(tmđk\right)\)
vậy phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(1;5\right)\)
b) bn đặc : \(a=\dfrac{1}{x};b=\dfrac{1}{y+12}\)
c) bn đặc : \(a=\dfrac{x}{x+1};b=\dfrac{y}{y+1}\)
nhớ điều kiện nha
suy ra y : ( 1/2+1/8+1/8) =36
y : 3/4 =36
y = 36 x 3/4
y = 27
y : ( 1/2+1/8+1/8) =36
y : 3/4 =36
y = 36 x 3/4
y = 27