Bài 1 : Tính tổng S , biết : \(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{2010\times2011}\)
Bài 2 : Tính tổng sau : \(S=\frac{3}{10\times13}+\frac{3}{13\times16}+\frac{3}{16\times19}+....+\frac{3}{58\times61}\)
Bài 3 : Tính tổng sau : \(S=\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}+....+\frac{1}{19\times22}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)