a) tính nhanh
( 1 + \(\dfrac{1}{2}\) ) x ( 1 + \(\dfrac{1}{3}\) ) x ..... x ( 1 + \(\dfrac{1}{2005}\) )
b) tính bằng cách thuận tiện
\(\dfrac{2}{3}\) x \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) x \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)
\(=\dfrac{-5}{4}\)
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
\(a,\dfrac{5}{13}\times\dfrac{4}{15}\times13=\dfrac{5\times4\times13}{13\times5\times3}=\dfrac{4}{3}\\ b,\left(\dfrac{3}{7}+\dfrac{5}{2}\right)\times\dfrac{7}{5}=\dfrac{3}{7}\times\dfrac{7}{5}+\dfrac{5}{2}\times\dfrac{7}{5}=\dfrac{3}{5}+\dfrac{7}{2}=\dfrac{6}{10}+\dfrac{35}{10}=\dfrac{41}{10}\\ c,\dfrac{1}{5}\times\dfrac{11}{18}+\dfrac{11}{18}\times\dfrac{3}{5}=\dfrac{11}{18}\times\left(\dfrac{1}{5}+\dfrac{3}{5}\right)=\dfrac{11}{18}\times\dfrac{4}{5}=\dfrac{22}{45}\)
\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot\dfrac{25}{24}\cdot\dfrac{36}{35}=\dfrac{12}{7}\)
= 4/3*9/8*16/15*25/24*36/35
=2*2/1*3 * 3*3/2*4 *4*4/3*5 *5*5/4*6 * 6*6/5*7
= (2*3*4*5*6 / 1*2*3*4*5) * ( 2*3*4*5*6 / 3*4*5*6*7)
=6/1* 2/7
= 12/7
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032
a)\(=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times...\times\left(\dfrac{2005}{2005}+\dfrac{1}{2005}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{2006}{2005}=\dfrac{2006}{2}=1003\)
b)\(=\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\times\dfrac{1}{2}=\dfrac{3}{3}\times\dfrac{1}{2}=\dfrac{1}{2}\)
b)
\(\dfrac{1}{2}x\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{1}{2}x1=\dfrac{1}{2}\)