K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Trước hết bạn chứng minh :  \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\) (Chứng minh bằng biến đổi tương đương)

Áp dụng BĐT AM-GM ta có : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{9}{6-\left(a+b+c\right)}\ge\frac{9}{6-\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{9}{6-3}=3\)

18 tháng 10 2016

Dễ thấy \(0< a,b,c< 2\)

Ta có:

\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\Leftrightarrow a\left(a-1\right)^2\ge0\)

Tương tự với các cái tương tự, ta được:

\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\)(Đpcm)

Dấu = khi a=b=c=1

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)

\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)

\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

DD
5 tháng 4 2021

Theo bất đẳng thức AM - GM ta có: 

\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)

Làm tương tự có hai bất đẳng thức với \(\frac{b+1}{c^2+1}\)và \(\frac{c+1}{a^2+1}\)sau đó cộng lại ta có: 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\left(a+1-\frac{ab+b}{2}\right)+\left(b+1-\frac{bc+c}{2}\right)+\left(c+1-\frac{ca+a}{2}\right)\)

\(=3+\frac{a+b+c-ab-bc-ca}{2}\).

Nếu ta chứng minh được \(a+b+c-ab-bc-ca\ge0\)ta sẽ có đpcm. 

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a+b+c\ge ab+bc+ca\).

Do đó ta có đpcm. 

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

2 tháng 10 2018

Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

Ta có:

\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)

Tương tự ta có:

\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)

\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)

\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)

Dấu bằng xảy ra khi a=b=c=1

2 tháng 10 2018

mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra

17 tháng 3 2020

Bài hay quá!

Đặt \(a=\frac{3x}{x+y+z};b=\frac{3y}{x+y+z};c=\frac{3z}{x+y+z}\left(x;y;z>0\right)\)

Sau khi quy đồng cần chứng minh:

\(2\, \left( x+y+z \right) \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)(gõ Latex, không biết ad đã fix lỗi chưa, nếu nó không hiện thì hỏi ad, đừng hỏi em!)

Hay là: \( \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)

Or:

\(9\, \left( 1/4\, \left( x-2\,z+y \right) ^{2}+3/4\, \left( -y+x \right) ^{2} \right) {z}^{3}+3\, \left( x-2\,z+y \right) ^{3}{z}^{2}+ \left( \left( 3/4\, \left( x-2\,z+y \right) ^{2}+1/4\, \left( -y+x \right) ^{2} \right) \left( -y+x \right) ^{2}+ \left( x-z \right) ^{ 4}+ \left( y-z \right) ^{4} \right) z+ \left( x-z \right) \left( y-z \right) \left( \left( x-z \right) ^{3}+3\, \left( x-z \right) ^{2} \left( y-z \right) +3\, \left( x-z \right) \left( y-z \right) ^{2}+ 21\, \left( x-z \right) \left( y-z \right) z+ \left( y-z \right) ^{3} \right) \geq 0 \)

Cách xử trí: Nếu nó không hiện: Sau khi quy đồng, ta biến đối nó về như trong link sau: https://imgur.com/D8ScX4k

18 tháng 3 2020

Cách khác:

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^2+b^2+c^2+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(ab+bc+ca\right)\ge12\)

Or: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\ge6\)

Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)(*)

Do đó: \(VT=\frac{ab+bc+ca}{abc}+ab+bc+ca\)

\(\ge\frac{a+b+c\left(a+b\right)-1}{\frac{c\left(a+b\right)^2}{4}}+a+b+c\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(a+b\right)-4}{c\left(a+b\right)^2}+\left(c+1\right)\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(3-c\right)-4}{c\left(3-c\right)^2}+\left(c+1\right)\left(3-c\right)-1\ge6\)

Last inequality\(\Leftrightarrow\frac{\left(2-c\right)^3\left(c-1\right)^2}{c\left(c-3\right)^2}\ge0\). Nếu c < 2 thì ta có đpcm.

Nếu \(c\ge2\)

\(VT=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\)

\(>\frac{4}{a+b}+ab+c\left(a+b\right)\ge\frac{4}{a+b}+2\left(a+b\right)\ge2\sqrt{8}>3\)

31 tháng 1 2017

 (x;y) là(−1;0) và (1;2) 

K nha

31 tháng 1 2017

xem lại đề câu 1

20 tháng 2 2020

1 . 

Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)

Chia cả hai vế cho abc > 0 

\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)

\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)

Vậy GTNN của C là 17 khi a =2; b =1; c = 1

20 tháng 2 2020

2 . 

Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên 

\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)

\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tự ta có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)

\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)

Cộng vế theo vế (1), (2) và (3) ta được: 

\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)

\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)

Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)