chứng minh rằng 1+12^+12^+12^+....................+12^(^=1 đến 13) chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
`13^n-1(n in NN^**)`
`=(13-1)(13^{n-1}+........+1)`
`=12..... vdots 12`
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)
\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)
chọn mẫu chung
Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )
\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)
\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)
Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13
nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
2) 1113 - 1112 - 1111
= 1111+2 - 1111+1 - 1111
= 1111.112 - 1111.11 - 1111
= 1111(112 - 11 - 1)
= 1111.109 \(⋮\) 109
vậy.........
mik ko biết nhưng hình như câu 1 sai đề bài hay sao ý
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
ta có :
\(81^7-9^{13}+12^{25}+27^9-12^{24}=\left(3^4\right)^7-\left(3^2\right)^{13}+4^{25}.3^{25}+\left(3^3\right)^9-4^{24}.3^{24}\)
\(=3^{28}-3^{26}+3^{27}+4^{24}.3^{24}\left(4.3-1\right)=3^{26}\left(3^2-1+3\right)+4^{24}.3^{24}.11\)
\(=3^{26}.11+4^{24}.3^{24}.11\) mà \(\hept{\begin{cases}3^{26}.12̸\text{ không chia hết cho 16}\\4^{24}.3^{24}.11\text{ chia hết cho 16}\end{cases}}\)
Vậy biểu thức ban đầu không chia hết cho 16
Câu a. Đề là cm chia hết cho 2. Tin mình đi có thể sách bạn bị con muỗi đậu vào thêm số 1. Cm nếu n chẵn hiển nhiên. Nếu n lẻ thì (n+13) chẵn chia hét cho =đp cm
b)7^4=49^2 tận cùng là 1 =>7^4)^n tân cùng 1 =>7^(4n)-1 tân cùng là 0 vậy chia hết cho 5
gợi ý
1+12=13
ghép hai số liên tiép với nhau có ra 7 cặp
A=13+13.(12+1)+...+13.(12^12+1)