Cho M = \(\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+...+\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}.\)
Hãy so sánh M với 1/2
CHỈ CHO MÌNH CÁCH LÀM VỚI
LÀM ĐÚNG MÌNH TICK CHO.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta so sánh từng số hạng :
\(\frac{\sqrt{2}-\sqrt{1}}{1+2}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}=\frac{1}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}< \frac{1}{2}\)
\(\frac{\sqrt{3}-\sqrt{2}}{2+3}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(2+3\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{1}{\left(2+3\right)\left(\sqrt{2}+\sqrt{3}\right)}< \frac{1}{2}\)
..........................................................................................................................................................................................
\(\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}=\frac{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2014}\right)}=\frac{1}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2015}\right)}< \frac{1}{2}\)
Vì mỗi số hạng của M đều nhỏ hơn 1/2 nên M < 1/2
Bài này mình làm chưa đúng nhé :) Để lát mình làm cách khác.
Ta có:
\(\frac{\sqrt{n+1}-\sqrt{n}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}\)\(=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta có:
\(M< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{2015}}\right)\)
1212;
1212;
1212.
k cho mình nhé.
1212
tk nhe@@@@@@@@@@@!!
aitk minh minh tk lai
bye