K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

a,-21

b,-12

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

NV
28 tháng 12 2021

\(E=\dfrac{\dfrac{5}{2}\left(2x^2+3\right)+\dfrac{15}{2}}{2x^2+3}=\dfrac{5}{2}+\dfrac{15}{2\left(2x^2+3\right)}\)

Do \(2x^2+3\ge3;\forall x\Rightarrow\dfrac{15}{2\left(2x^2+3\right)}\le\dfrac{15}{2.3}=\dfrac{5}{2}\)

\(\Rightarrow E\le\dfrac{5}{2}+\dfrac{5}{2}=5\)

\(E_{max}=5\) khi \(x=0\)

9 tháng 10 2017

Ta có: C= -8x + 2x^2 -17 = 2x^2 - 8x -17

= 2(x^2 - 4x) - 17

= 2( x^2 - 2.x.2 + 2^2 - 4 ) -17

= 2( x-2)^2 - 8 -17

= 2( x-2)^2 -25 >= -25

( Vì (x-2)^2 >= 0 với mọi x)

Min C = -25 <=> x-2 = 0 <=> x=2