Tìm x,y
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)và\(x^4y^4=81\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)
Từ 2 ta có :
x2 = 7k + 2y2
Thay ngược vào (1) , ta lại có :
7k + 2y2 + y2 = 10k
=> y2 = k
<=> x2 = 9k
Thay x2 , y2 vào biểu thức x4.y4 = 81
=> 81k2 . k2 = 81
=> k4 = 1
=> k = 1 hoặc = -1
Với k = 1 thì x = 3 hoặc -3
và y = 1 hoặc -1
Với k = -1 thì x,y không có giá trị thõa mãn
Đặt x2+y210 =x2−2y27 =k
⇒{
x2+y2=10k(1) |
x2−2y2=7k(2) |
Từ 2 ta có :
x2 = 7k + 2y2
Thay ngược vào (1) , ta lại có :
7k + 2y2 + y2 = 10k
=> y2 = k
<=> x2 = 9k
Thay x2 , y2 vào biểu thức x4.y4 = 81
=> 81k2 . k2 = 81
=> k4 = 1
=> k = 1 hoặc = -1
Với k = 1 thì x = 3 hoặc -3
và y = 1 hoặc -1
Với k = -1 thì x,y không có giá trị thõa mãn
nha các bạnTa có: \(\frac{x^2+y^2}{10}=\frac{2x^2+2y^2}{20}=\frac{x^2-2y^2}{7}=\frac{\left(2x^2+2y^2\right)-\left(x^2-2y^2\right)}{20+7}=\frac{3x^2}{27}\)(theo t/c của dãy TSBN)
=>\(\frac{x^2+y^2}{10}=\frac{3x^2+3y^2}{30}=\frac{3x^2}{27}=\frac{\left(3x^2+3y^2\right)-3x^2}{30-27}=\frac{3y^2}{3}\) (theo t/c của dãy TSBN)
=>\(\frac{3x^2}{27}=\frac{3y^2}{3}\)
=>\(\frac{x^2}{3^2}=y^2\)
=>\(\left(\frac{x}{3}\right)^2=y^2\)
=>\(\frac{x}{3}=y\) hoặc \(\frac{x}{3}=-y\)
=>x=3y hoặc x=-3y
Ta có: x4y4=81
=>(xy)4=34=(-3)4
=>xy=3 hoặc xy=-3
TH1: xy=3
Thay x=3y và x=-3y lần lượt vào ta được x=3 và y=1
TH2:xy=-3
Thay x=3y và x=-3y lần lượt vào ta được x=3; y=-1 hoặc x=-3; y=1
Vậy (x;y)\(\in\){(3;1);(-3;1);(3;-1)}
\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)
\(\Leftrightarrow27y^2=3x^2\)
\(\Leftrightarrow9y^2=x^2\)
\(\Leftrightarrow81y^4=x^4\)
Vì \(x^4y^4=81\Rightarrow81y^4.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
\(y=\pm1\Rightarrow x^2=9y^2=9\Rightarrow x=\pm3\)
Vậy (x;y)=(\(\pm3;\pm1\))
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Rightarrow10\left(x^2-2y^2\right)=7.\left(x^2+y^2\right)\)
\(10x^2-20y^2=7x^2+7y^2\)
\(10x^2-7x^2=20y^2+7y^2\)
\(3x^2=27y^2\)
\(x^2=9y^2\)
\(\Rightarrow x^4=81y^4\)
\(\text{Thay }x^4=81y^4\text{ vào }x^4y^4=81\text{ ta được:}\)
\(81y^4.y^4=81\)
\(y^8=1\)
\(\Rightarrow y=1\text{Hoặc }y=-1\)
\(\text{Với }y=1\text{ thì }x^4=81.1=81\Rightarrow x=3\text{ hoặc }x=-3\)
\(\text{Với }y=-1\text{ thì }x^4=81.1=81\Rightarrow x=3\text{ hoặc }x=-3\)
\(\text{Vậy }x=\left\{3;-3\right\};y=\left\{1;-1\right\}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=\frac{x^2+y^2-\left(x^2-2y^2\right)}{10-7}=\frac{3y^2}{3}=y^2\)
=> x2 + y2 = 10y2 => x2 = 9y2 => x4 = 81y4
Thay vào x4.y4 = 81y4.y4 = 81y8 = 81 => y8 = 1 => y = 1 hoặc y = - 1
=> x2 = 9 => x = 3 hoặc x = - 3
Vậy (x;y) = (3;1) ; (3;-1); (-3;1) ;(-3;-1)