cho tam giác ABC vẽ tia phân giác Bx của góc ABC cắt AC tại M . Từ M vẽ đường thẳng song song với AB cắt BC tại N . Từ N vẽ Ny song sống Bx chứng tỏ rằng
MBC=BMN
tia Ny là tia phân giác của MNC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì Ny // Bx => N1 = B1 (Đồng vị)
N2 = B2 (SLT)
N1 = N2 và Ny năm giữa NM và NC
=> Tia Ny là tia phân giác của MNC
a)
* Vì Bx là tia phân giác của góc ABC (1)
=> B1 = B2
*Vì AB // MN => BMN = B2 (SLT) (2)
(1) VÀ (2) => MBC = BMN
a) Vì AB//MN (gt)
=> (cặp góc soletrong)
Mà
=> hay
b) (cặp góc seletrong do Bx//Ny)
Mà:
=> (1)
Lại có (cặp góc đồng vị do Bx//By)
=>
=> Nx là tia phân giác của
Cho tam giác ABC, kẻ phân giác Bx của góc B. Bx cắt AC tại M. Từ M kẻ đường thẳng song song với AB, cắt BC tại N. Từ N kẻ Ny song song với Bx. Chứng minh:
a, Góc xBC = góc BMN
b, Tia Ny là tia phân giác của góc MNC