K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)

6 tháng 2 2023

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

6 tháng 2 2023

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

13 tháng 7 2018

A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\)

A= 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2018}-\frac{1}{2019}\)

A= 1 - \(\frac{1}{2019}\)

A= \(\frac{2018}{2019}\)

13 tháng 7 2018

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2018\cdot2019}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(A=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

Vậy \(A=\frac{2018}{2019}\)

HOK TỐT ==.==

29 tháng 3 2022

\(1-\dfrac{1}{x+1}=\dfrac{14}{15}\)

\(\dfrac{x+1-1}{x+1}=\dfrac{14}{15}\)

\(\dfrac{x}{x+1}=\dfrac{14}{15}\)

\(15x=14x+14\)

\(x=14\)

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}+\frac{1}{2017\cdot2018}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)

\(=2-\frac{1}{2018}\)

\(=\frac{1009}{2018}-\frac{1}{2018}\)

\(=\frac{1008}{2018}=\)TỰ RÚT GỌN NHA

2 tháng 4 2019

\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(=2-\frac{2007}{2008}\)

\(=\frac{2009}{2008}\)

~Học tốt~

31 tháng 3 2019

\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)

Dạng tổng quát :

\(\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{n\left(n+1\right)}=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2\left(n+1\right)}=\frac{n-1}{2\left(n+1\right)}\)

31 tháng 3 2019

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1999}-\frac{1}{2000}\)

\(=\frac{1}{2}-\frac{1}{2000}\)

\(=\frac{499}{2000}\)

14 tháng 6 2020

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

14 tháng 6 2020

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé

9 tháng 2 2023

\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ =1-\dfrac{1}{10}\\ =\dfrac{10-1}{10}=\dfrac{9}{10}\)

9 tháng 2 2023

1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10

=2-1/1.2+3-2/2.3+4-3/3.4+...+10-9/9.10

=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10

=1-1/10

=9/10

Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)

\(=\dfrac{2020}{2021}\)

mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)

nên A<1

31 tháng 1 2021

làm răng mà gõ đc kí hiệu toán học vậy bạn