K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Đặt A = 12 + 22 + 32 + 42 + ... + n2

A = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + ... + (1 + n - 1).n

A = 1 + 1.2 + 2 + 3 + 2.3 + 4 + 3.4 + ... + n + (n - 1).n

A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + (1 + 2 + 3 + 4 + ... + n)

A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + \(\frac{n.\left(n+1\right)}{2}\)

Đặt B = 1.2 + 2.3 + 3.4 + ... + (n - 1).n

3B = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + (n - 1).n.[(n + 1) - (n - 2)]

3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n - 1).n.(n + 1) - (n - 2).(n - 1).n

3B = (n - 1).n.(n + 1)

\(B=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)

\(A=\frac{n.\left(n+1\right)}{2}+\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)

\(A=\frac{3n.\left(n+1\right)+2.\left(n-1\right).n.\left(n+1\right)}{6}\)

\(A=\frac{n.\left(n+1\right).\left(3+2n-2\right)}{6}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\left(đpcm\right)\)

10 tháng 7 2017

cm = quy nạp

\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\text{*}\right)\)

*Với n=1 thì (*) đúng 

*)Giả sử (*) đúng với n=k khi đó (*) thành

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Thật vậy  cm \(n=k+1\) đúng hay 

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Lại có: \(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)

\(=\frac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+3k+4k+6\right)}{6}=\frac{\left(k+1\right)\left[\left(2k^2+3k\right)+\left(4k+6\right)\right]}{6}\)

\(=\frac{\left(k+1\right)\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Vậy (*) đúng hay ta có DPCM

26 tháng 2 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

5 tháng 12 2017

Ta có:

\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)

=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)

=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)

=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)

13 tháng 6 2016

Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp

Đặt n = k thì có đẳng thức

Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )

13 tháng 6 2016

thi giai ra luon dj

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath