K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1) 
vì n lẻ nên: 
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8 
(n - 3) là số chẵn chia hết cho 2 
=> A chia hết cho 16(*) 
mặt khác: 
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1) 
xét các trường hợp: 
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3 
=> A chia hết cho 3 (**) 
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau). 
 

29 tháng 3 2018

Việt Anh làm sai rồi,

"(n-1)(n+1) là tích 2 số liên tiếp chia hết cho 8

n-3 là số chẵn chia hết cho 2

=> A chia hết cho 16" ?

Xem lại bạn nhé, 2 và 8 không phải là hai số nguyên tố cùng nhau.

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

15 tháng 5 2021

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

15 tháng 5 2021

bài kia làm tương tự

20 tháng 1 2016

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

5 tháng 8 2017

Ta có : \(n^3-3n^2-n+3=n^2.\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n^2-1\right)=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)Vì n là số nguyên lẻ nên n có dạng 2k +1 ( n \(\in N\)*)

Thay n = 2k + 1 vào ta có :

\(\left(2k+1-3\right)\left(2k+1+1\right)\left(2k+1-1\right)=\left(2k-2\right)\left(2k+2\right)2k=2\left(k-1\right).2\left(k+1\right).2k=8.k.\left(k-1\right).\left(k+1\right)⋮8\)

\(\left(k-1\right).k.\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(k-1\right).k.\left(k+1\right)⋮2\)

\(\left(k-1\right).k.\left(k+1\right)⋮3\)

=> \(\left(k-1\right).k.\left(k+1\right)⋮6\)

=> \(8.\left(k-1\right).k.\left(k+1\right)⋮48\)

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

6 tháng 8 2017

b) Giải:

Đặt \(A=n^3+3n^2-n-3\) ta có

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Thay \(n=2k+1\left(k\in Z\right)\) ta được:

\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)

\(=8\left(k+1\right)k\left(k+2\right)\)

\(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)

Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)

Cảm ơn bạn rất nhiều! thanghoa

16 tháng 4 2018

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*