K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

\(A=\left|2x+1\right|-3,6+2,4\)

\(A=\left|2x+1\right|-1,2\ge1,2\)

Dấu "=" xảy ra khi và chỉ khi |2x + 1| = 0

=> 2x + 1 = 0

=> 2x = -1

\(\Rightarrow x=\frac{-1}{2}\)

Vậy \(A_{Min}=-1,2\)khi và chỉ khi \(x=\frac{-1}{2}\)

25 tháng 10 2021

\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)

\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)

\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)

12 tháng 10 2021

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

12 tháng 10 2021

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)

7 tháng 12 2021

Ta có:
\(\left|3x-1\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\)

\(\left(2y-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(\Rightarrow\left|3x-1\right|+\left(2y-1\right)^2+2021\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 2 2018

1)

\(2x^2-2xy+5y^2-2x-2y+1=0.\)

\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)

ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)

a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)

\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)

b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:

\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)

7 tháng 10 2018

Để A đạt GTNN thì 2|x-1009| và |2x+1| phải đạt GTNN

2|x-1009| \(\ge0\)

|2x+1| \(\ge0\)

=> Xét : Nếu 2|x-1009| + |2x+1| > 0 

Thì |x-1009| khác 0 

|2x+1| khác 0 

Do đó : 

\(x-1009>0\)

\(2x+1>0\)

\(\Rightarrow2\left|x-1009\right|=2x-2018+2x+1\)

\(=2019\)

Xét : Nếu 2|x-1009| = 0

|2x+1|=0 

=> 2|x-1009|=|2x+1|=0

2 > 0 => |x-1009|=|2x+1| = 0 

x - 1009 -2x - 1= 0

-x = 1010

x = -1010 

=> 2|-1010-1009|+|2*-1010+1| > 2019 

Vậy GTNN của A= 2019 đtạ được khi 2|x-1009| và |2x+1| khác 0