1.Rút gọn
a) C = 1/2 + 1/2^2 + 1/2^3 + ....+ 1/2^2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right)\\ C=1-\dfrac{1}{2^{2020}}=\dfrac{2^{2020}-1}{2^{2020}}\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
2A=2+1+1/2+...+1/22011
=>2A-A=2+1+1/2+...+1/22011-(1+1/2+1/22+...+1/22012)
=>A=2-1/22012
Vậy ...
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
Giải:
C=1/2 + 1/2^2 + 1/2^3 + ... + 1/2^2020
2C=1 + 1/2 + 1/2^2 + ... +1/2^2019
2C-C=(1+1/2+1/2^2+...+1/2^2019)-(1/2+1/2^2+1/2^3+...+1/2^2020)
C=1-1/2^2020
Chúc bạn học tốt!