Đường cao của 1 tam giác vuông chia cạnh huyền thành hai đoạn có độ dài là 1 và 2.Tính tổng bình phương của hai cạnh góc vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1:
A B 2 = B H . B C = 1 . 3 = 3
=> AB = √3
Theo định lí 1:
A C 2 = H C . B C = 2 . 3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1: AB2 = BH.BC = 1.3 = 3
=> AB = √3
Theo định lí 1: AC2 = HC.BC = 2.3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH, ta có:
AH2=BH.CH⇒AH=√BH.CH=√1.2=√2
Áp dụng định lí Pytago vào tam giác ABH vuông tại H, ta có:
AH=√BH2+AH2=√1+2=√3AH=BH2+AH2=1+2=3
Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
AC=√BC2−AB2=√32−3=√6AC=BC2−AB2=32−3=6
#)Giải :
Áp dụng định lí Py - ta - go :
\(BC^2=AB^2+AC^2\Leftrightarrow BC^2=3^2+4^2=9+16=25\)
\(\Rightarrow BC=\sqrt{25}=5\)
Ta có : \(AB.AC=BC.AH\)
\(\Rightarrow3.4=5.AH\Rightarrow H=\frac{12}{5}\)
\(\hept{\begin{cases}AB^2=BC.BH\Rightarrow BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\\AC^2=BC.CH\Rightarrow CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\end{cases}}\)
Vậy \(\hept{\begin{cases}BC=5\\BH=\frac{9}{15}\\CH=\frac{16}{5}\end{cases}}\)
Xét hai tam giác vuông DAC và DBA ,ta có:
∠ (ADC) = ∠ (BDA) = 90 0
∠ C = ∠ (DAB) (hai góc cùng phụ ∠ B )
Suy ra: △ DAC đồng dạng △ DBA (g.g)
Suy ra:
⇒ D A 2 = D B . D C
hay DA = D B . D C = 9 . 16 = 12 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:
A B 2 = D A 2 + D B 2 = 9 2 + 12 2 = 225 ⇒ AB =15 (cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ACD,ta có:
AC2 = DA2 + DC2 = 122 +162 = 400 ⇒ AC = 20cm
Vậy BC = BD + DC = 9 + 16 = 25(cm)
Giả sử tam giác ABC có góc BAC = 90o, AH ⊥ BC, BH = 3, CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AB2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = \(\sqrt{21}\)
AC2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = \(\sqrt{28} = 2\sqrt{7} \)
Chúa PaiN sẽ giúp :)))))
Vẽ cái tam giác ra đặt tên y chang mình nhé :))))
Tam giác ABC vuông tại A Có AH là đường cao ứng với cạnh huyền ; BH = 9/5 và CH 16/5
Ta có \(AH^2=BH.BC\) ( 1 trong 4 công thức )
\(\Rightarrow AH^2=\left(\frac{9}{5}\right)^2.\left(\frac{16}{5}\right)^2\Rightarrow AH=\frac{12}{5}\)
ta có: tam giác vuông AHB vuông tại H :
\(AB^2=AH^2+BH^2=\left(\frac{12}{5}\right)^2+\left(\frac{9}{5}\right)^2\)
\(\Rightarrow AB^2=\frac{144}{25}+\frac{81}{25}=9\left(cm\right)\Rightarrow AB=3\left(cm\right)\)
Ta có: tam giác AHC vuông tại H:
\(AC^2=AH^2+HC^2=\left(\frac{12}{5}\right)^2+\left(\frac{16}{5}\right)^2\)
\(\Rightarrow AC^2=\frac{144}{25}+\frac{256}{25}=16\left(cm\right)\Rightarrow AC=4\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=3+4=7\left(cm\right)\)
BC²=AB²+AC²=9+16=25=>BC=5 chứ, mà tính cạnh góc vuông thui mà
Giả sử: tam giác ABC vuông tại A có đường cao AH, BH=1; CH=2
Ta có: \(AH^2=BH.CH\)
\(\Leftrightarrow AH=\sqrt{2}\)
Trong tam giác ABH vuông tại H ta có
\(AB^2=AH^2+BH^2=2+1=3\)
Trong tam giác AHC vuông tại H có
\(AC^2=AH^2+HC^2=2+4=6\)
Khi đó: \(AB^2+AC^2=9\)