Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+y^3=65\\x^2y+xy^2=20\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^3+xy^2+3\left(x-2y\right)=0\\x^2+xy=3\end{matrix}\right.\)\(\Rightarrow x^3+xy^2+\left(x^2+xy\right)\left(x-2y\right)=0\)\(\Leftrightarrow x^3+xy^2+x^3-x^2y-2xy^2=0\Leftrightarrow2x^3-x^2y-xy^2=0\)\(\Leftrightarrow x\left(2x+y\right)\left(x-y\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=-2x\\x=y\end{matrix}\right.\)
+) \(x=0\Rightarrow0y=3\)(vô nghiệm)
+) y=-2x \(\Rightarrow x^2-2x^2=3\Leftrightarrow-x^2=3\)(vô nghiệm)
+) x=y\(\Rightarrow2x^2=3\Leftrightarrow x^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt{\dfrac{3}{2}}\\x=y=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)
Bạn coi lại đề, hệ này ko giải được
Pt bên dưới là \(xy\left(y^2+3y+3\right)=4\) thì giải được
\(x^2y+2y+x=4xy< =>xy\left(x+3\right)=4xy< =>x+3=4< =>x=1\)
Thế x=1 vào 1 trong 2 phương trình => y=1
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy+3y^2+x=3\left(1\right)\\x^2+xy-2y^2\left(2\right)\end{matrix}\right.\)
\(pt\left(2\right)\Leftrightarrow\left(x^2-y^2\right)+y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
+) Với x=y, thay vào pt (1) ta có: \(4x^2+x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
=> \(x=y=-1;x=y=\dfrac{3}{4}\)
+) Với \(x=-2y\), thay vào pt(1) ta có: \(y^2-2y-3=0\Leftrightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=3\Rightarrow x=-6\end{matrix}\right.\)
Vậy hpt có 4 nghiệm: \(\left(x;y\right)\in\left\{\left(-1;-1\right),\left(\dfrac{3}{4};\dfrac{3}{4}\right),\left(2;-1\right),\left(-6;3\right)\right\}\)
\(x^3-7x^2y+16xy^2-12y^3=0\)
\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)
Thế xuống pt dưới giải đơn giản
\(\Rightarrow\left\{{}\begin{matrix}x^3+y^3=65\\3x^2y+3xy^2=60\end{matrix}\right.\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=125\)
\(\Leftrightarrow\left(x+y\right)^3=125\Leftrightarrow x+y=5\Rightarrow y=5-x\)
Thế vào pt đầu:
\(x^3+\left(5-x\right)^3=65\)
\(\Leftrightarrow x^2-5x+4=0\Rightarrow\left[{}\begin{matrix}x=1;y=4\\y=4;y=1\end{matrix}\right.\)