Cho hthang cân ABCD (AB// CD). CD= a, mà góc A + góc B= ½ góc C+ góc D. Đườg chéo AC vuông góc BC
a) Tính các góc của hthang
b) C/m: Ac là p/giác góc DAB
c) Tính diện tích hthang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ABCD là hình thang cân
=> \(\widehat{D}=\widehat{C},\widehat{A}=\widehat{B}\)(1)
Mà: \(\widehat{A}+\widehat{B}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)(2)
Từ (1), (2)
=> \(2.\widehat{A}=\frac{1}{2}.2.\widehat{D}\Leftrightarrow\widehat{D}=2.\widehat{A}\)(3)
Mặt khác: \(\widehat{A}+\widehat{D}=180^o\)(4)
Từ (3), (4)
=> \(\widehat{A}=60^o\Rightarrow\widehat{D}=120^o\)
=> \(\widehat{B}=60^o;\widehat{C}=60^o\)
b) Ta có: \(\widehat{C}=\widehat{C_1}+\widehat{C_2}\Rightarrow\widehat{C_1}=\widehat{C}-\widehat{C_2}=120^o-90^o=30^o\)
=> \(\widehat{A_1}=\widehat{C_1}=30^o\left(soletrong\right)\)
Mà \(\widehat{A}=\widehat{A_1}+\widehat{A_2}\Rightarrow\widehat{A_2}=30^o\)
Từ 2 điều trên suy ra góc A1 = góc A2
=> AC là phân giác góc DAB