Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BEA}+\widehat{EAH}=90^0\)
\(\widehat{BAE}+\widehat{CAE}=90^0\)
mà \(\widehat{HAE}=\widehat{CAE}\)
nên \(\widehat{BEA}=\widehat{BAE}\)
hay ΔABE cân tại B
\(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{CDA}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{CAD}=\widehat{CDA}\)
hay ΔDCA cân tại C
b: Đề bài yêu cầu gì?
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.