K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

17 tháng 5 2016

a) Ta có tia BM là tia phân giác góc ABC (GT)

suy ra góc ABM = góc MBC

Xét tam giác ABM và tam giác EBM có 

BM chung

góc ABM = góc MBE (CMT)

BE = BA (GT)

suy ra tam giác ABM = tam giác EBM (c.g.c)

suy ra góc BAM = góc MEB ( 2 góc tương ứng )

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAM = 90

Mà góc BAM = góc MEB (CMT)

suy ra góc MEB = 90

suy ra ME vuông góc BC

b)Ta có tam giác BMA = tam giác BME (CMT)

suy ra BA = BE (2 cạnh tương ứng)

Xét tam giác AEB có 

BA = BE (CMT)

suy ra tam giác AEB cân tại B (định nghĩa ) (1)

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAC = 90

Xét tam giác ABC có :

góc BAC + góc ABC + góc BCA = 180 (định lí tổng 3 góc trong 1 tam giác)

Mà góc BAC = 90 (CMT)

góc BCA = 30 (GT)

suy ra góc ABC = 60 (2)

Từ (1),(2) suy ra tam giác AEB đều (định nghĩa)

Ta có tam giác ABE đều (CMT)

suy ra góc BAE = 60 (T/C)

Ta có góc BAE + góc EAC = góc BAC

Mà góc BAC = 90 (CMT)

góc BAE = 60 (CMT)

suy ra góc EAC = 30

Mà góc ECA = 30 (GT)

suy ra góc EAC = góc ECA = 30

Xét tam giác EAC có 

góc EAC = góc ECA (CMT)

suy ra tam giác EAC cân tại E (định nghĩa)

c)Ta có CH vuông góc BM tại H (GT)

suy ra góc BHF = góc BHC = 90

Xét tam giác BHF và tam giác BHC có 

góc FBH = góc CBH (CMT)

BH chung

góc BHF = góc BHC = 90 (CMT)

suy ra tam giác BHF = tam giác BHC (g-c-g)

suy ra HF = HC ( 2 cạnh tương ứng )

Xét tam giác MHF và tam giác MHC có

MH chung

góc BHF = góc BHC = 90 (CMT)

HF = HC (CMT)

suy ra tam giác MHF = tam giác MHC (c-g-c)

suy ra MF = MC (2 cạnh tương ứng )

Ta có ME vuông góc BC (CMT)

suy ra góc MEB = góc MEC = 90

Ta có : góc BAC + góc CAF = 180 (2 góc kề bù )

Mà góc BAC = 90 (CMT)

suy ra góc CAF =90

Ta có tam giác BMA = tam giác BME (CMT)

suy ra MA = ME (2 cạnh tương ứng )

Xét tam giác AMF và tam giác EMC có 

MA =ME (CMT)

góc MAF = góc MEC = 90(CMT)

MF = MC (CMT)

suy ra tam giác MAF = tam giác MEC (ch-cgv)

suy ra góc AMF = góc EMC (2 góc rương ứng)

Ta có góc AME + góc EMC = 180 (2 góc kề bù)

Mà góc EMC = góc AMF (CMT)

suy ra góc AME + góc AMF = 180 

suy ra E;M;F thẳng hàng 

18 tháng 5 2016

sao chả ai k đúng cho mình vậy

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AM=EC(Hai cạnh tương ứng)

c) Xét ΔBAE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)

mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)

và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)

nên \(\widehat{AEC}=\widehat{EAM}\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)