K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

vì sao 43=84

26 tháng 4 2016

a) ta có

goc BAD+ goc DAC =90 (2 góc kề phụ)

goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)

goc DAC=goc HAD (AD lả p/g goc  HAC)

==> góc BAD= goc ADB

-> tam giac BAD cân tại B

b) xet tam giac ADH và tam giac ADE ta có

AD= AD ( cạnh chung) 

goc HAD = goc DAC ( AD là p/g goc HAC)

goc AID = góc AIE (=90)

--> tam giac ADH= tam giac ADE (g-c-g)

-< AH= AE ( 2 canh tương ứng)

Xét tam giac AHD và tam giac AED ta có

AD=AD ( cạnh chung)

AH=AE (cmt)

goc DAH= goc DAE ( AD là p/g HAC)

-> tam giac AHD= tam giac AED ( c-g-c)

-> goc AHD= goc AED ( 2 góc tương ứng

mà góc AHD = 90 ( AH vuông góc BC)

nên AED =90

-> DE vuông góc AC

c) Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( dly pi ta go)

152=122+BH2

BH2 =152-122=81

BH=9

ta có BA=BD ( tam giác ABD cân tại B)

          BA=15 cm (gt)

-> BD=15

mà BH+HD=BD ( H thuộc BD)

nên 9+HD=15

HD=15-9=6

Xét tam giác ADH vuông tại H ta có

AD2=AH2+HD2 ( định lý pitago)

AD2=122+62=180

-> AD=\(\sqrt{180}=6\sqrt{5}\)

12 tháng 5 2018

a) Vì BD = BA nên ΔΔBAD cân tại B

=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm

b) Ta có: góc BAD + g DAC = 90o

=> g DAC = 90o - g BAD (1)

Áp dụng tc tam giác vuông ta có:

g HAD + g BDA = 90o

=> g HAD = 90o - g BDA (2)

mà góc BAD = g BDA (câu a)

=> gDAC = g HAD

=> AD là tia pg của g HAC.

c) Áp dụng tc tổng 3 góc trong 1 tg ta có:

g AHD + g HDA + g HAD = 180o

=> 90o + g HDA + g HAD = 180o

=> g HDA + g HAD = 90o (3)

g DAC + g DKA + g ADK = 180o

=> g DAC + 90o + g ADK = 180o

=> g DAC + g ADK = 90o (4)

mà gDAC = g HAD hay gDAK = gHAD

Xét tgHAD và tgKAD có:

g HDA = g ADK (c/m trên)

AD chung

g HAD = g DAK (c/m trên)

=> tgHAD = tgKAD (g.c.g)

=> AH = AK (2 cạnh t/ư)

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

19 tháng 5 2022

undefined

a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:

\(\widehat{A1}\)\(\widehat{A2}\) ( giả thiết)

AD chung

=> \(\Delta AHD=\Delta AED\) ( ch-gn)

=> DH = DE ( 2 cạnh tương ứng )

b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.

Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:

\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)

HD = HE ( cmt)

=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)

=> DM = DC ( 2 cạnh tương ứng)

=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)

~ Cậu ktra lại nhé~

 

26 tháng 7 2018

A B C D E H

a) Tam giác ABC cân tại A có AH là đường cao nên AH đồng thời là đường trung tuyến

=>  HB = HC

Xét 2 tgiac vuông:  tam giác ABH và tam giác ACH có:

  AB = AC  (gt) 

  HB = HC  (cmt)

suy ra:  tam giác ABH = tam giác ACH    (ch_cgv)

=>  góc BAH = góc CAH 

2)  HB = HC = 1/2 BC = 4cm

Áp dụng Pytago ta có:

     AH2 + HB2 = AB2  

=>  AH2 = AB2 - HB2 = 9

=> AH = 3

3)  Xét 2 tam giác vuông:  tam giác HDB và tam giác HEC có:

     BH = CH  (cmt)

     góc DBH = góc ECH  (gt)

suy ra: tam giác HDB = tam giác HEC  (ch_gn)

=>  HD = HE

=> tam giác HDE cân tại H

          

a: Xét ΔABC có AB<AC

mà BH là hình chiếu của AB trên BC

và CH là hình chiếu của AC trên BC

nên HB<HC

Ta có:AB<AC

nên \(\widehat{B}>\widehat{C}\)

hay \(\widehat{BAH}< \widehat{CAH}\)

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

hay ΔBDA cân tại B