K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Notes: Name of school – Place – The building – The Principal – Teachers – Library, field, etc.

The name of my school is Oxford English School. It is situated in the middle of the town I live in. it is a very large school.

The school building is old but beautiful. There are many classrooms in it. The Principal is a middle-aged European. He is a kind and very efficient man.

The teachers of my school are of many races. Some are Chinese, some are Malay and some are Indian. There are also a few European teachers. They are all very clever and hardworking teachers. All the pupils them very much.

As there are many pupils in my school, the library, the play ground and the hall are all very large. Pupils may be seen learning in the library, playing in the playground or performing gymnass in the hall with great interest.

I am indeed proud of my school.

2 tháng 10 2016

khi nào lên lp 9 mk bày cho ha

GV
29 tháng 4 2017

A B C D E M h N

Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.

Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)

b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.

5 tháng 3 2023

Chia từng bài ra, vì nếu giải ra 2 bài này khá dài!

5 tháng 3 2023

Bài 3:


SADC=SBDC( Vì có chung đáy DC; 2 chiều cao bằng nhau)

 SABD=SABC( Vì có chung đáy AB; 2 chiều cao= nhau)

SDAO=SBOC( Vì SADC-SDOC=SBDC-SDOC=> SAOD=SBOC)

Đáp số: SADC=SBDC; SABD=SABC;SAOD=SBOC

Bài 4:

Tổng của 2 đáy là:

3240x2:36=180(cm)

Đáy bé hình thang là:

180:(2+3)x2=72(cm)

Đáy lớn hình thang:

180-72=108(cm)

b) Nối D với B

SABD=3240:(2+3)x2=1296(cm2)

SEAB=1296:2=648( cm2)

Đáp số: a) Đáy bé: 72 cm

Đáy lớn 108 cm

b) 648 cm2

#YQ

 

 

 

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng

∠ (ABF) +  ∠ (DFC) =  180 0

⇒ D, F, E thẳng hàng

△ DFC = △ EFB (g.c.g)

S D F C = S E F B

Suy ra: S A B C D = S A D E

△ DFC =  △ EFB⇒ DC = BE

AE = AB + BE = AB + DC

S A D E  = 1/2 DH. AE = 1/2 DH. (AB + CD)

Vậy : S A B C D = 1/2 DH. (AB + CD)

Câu 1:  a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm Câu 3: a) Cho D ABC ∽ D MNI. BiếtAˆA^= 800;NˆN^= 300. TínhCˆC^  b) Cho DABD DBDC, viết các cặp góc tương ứng...
Đọc tiếp

Câu 1:  

a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. 

b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm 

c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm 

Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm 

Câu 3: a) Cho D ABC ∽ D MNI. Biết

AˆA^

= 800;

NˆN^

= 300. Tính

CˆC^

 

 

b) Cho DABD DBDC, viết các cặp góc tương ứng bằng nhau của hai tam giác đã cho.   

Câu 4: Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Lấy N thuộc AC sao cho AN = 3cm. Chứng minh MN // BC. 

Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, AC = 15cm. Vẽ AM là tia phân giác của góc A (M thuộc BC). Biết BM = 8cm. Tính NC? 

Câu 6 : Cho có AB = 3cm, AC = 4,5cm, BC = 6cm. có DE= 12cm, EF=9cm, DF = 6cm. Chứng minh 

Câu 7: a) Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Biết MN // BC. Tính MN?  

b) Cho tam giác ABC có AB = 15cm, AC = 18cm. Trên AB lấy điểm M sao cho AM = 12cm, qua điểm M kẻ đoạn thẳng MN//BC. Tính độ dài đoạn thẳng AN? 

Câu 8:Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN? 

Câu 9 : H.thang ABCD(AB//CD) có AB = 6cm, CD = 24cm, BD = 12cm. Chứng minh: DABDDBDC. 

Câu 10 : Cho nhọn. Trên cạnh Ox, đặt các đoạn thẳng OA = 6cm, OB = 18cm. Trên cạnh Oy, đặt các đoạn thẳng OC = 9cm, OD = 12cm.Chứng minh hai tam giác OAD và OCB  đồng dạng. 

Câu 11: Cho có MN = 6cm; MP = 8cm;  

NP = 12cm. Hai tam giác ABC và MNP có đồng dạng không? Vì sao?  

Câu 12: Cho góc nhọn xAy, trên tia Ax đặt hai đoạn thẳng AM = 10cm và AB = 12cm. Trên tia Ay đặt hai đoạn thẳng AN = 8cm và AC = 15cm. BN cắt CM tại H 

Chứng minh đồng dạng với   

Chứng minh    

0