K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Số n là :

1 + 0 = 1

Đáp số : 1

2 tháng 10 2016

n = 1 và n =2

20 tháng 6 2019

để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
                                                                                         \(< =>6n+3⋮3n+2\)(1)
   
                          Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
                           Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
                           Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
                           Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
                          Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự 
                           

20 tháng 6 2019

ai  trả lời hết mik cảm ơn

cần gấp ạ

7 tháng 7 2017

Đáp án là D

Toán lớp 6 | Lý thuyết - Bài tập Toán 6 có đáp án

9 tháng 3 2020

- Để \(\frac{12}{3n-1}\)là số nguyên  \(\Rightarrow\)\(12⋮ 3n-1\)

\(\Rightarrow\)\(3n-1\inƯ\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

- Ta có bảng giá trị:

\(3n-1\)\(-1\)\(1\)\(-2\)\(2\)\(-3\)\(3\)\(-4\)\(4\)\(-6\)\(6\)\(-12\)\(12\)
\(n\)\(0\)\(\frac{2}{3}\)\(-\frac{1}{3}\)\(1\)\(-\frac{2}{3}\)\(\frac{4}{3}\)\(-1\)\(\frac{5}{3}\)\(-\frac{5}{3}\)\(\frac{7}{3}\)\(-\frac{11}{3}\)\(\frac{13}{3}\)
 \(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(L\right)\)

Vậy \(n\in\left\{-1; 0; 1\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

8 tháng 7 2017

để \(\frac{3n+5}{n+1}\)là phân số thì 3n+5\(⋮n+1\)

\(\Rightarrow3n+5=3\left(n+1\right)+2⋮n+1\)

\(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)

=>\(n+1\in\left\{-1;-2;1;2\right\}\)

n+1-1-212
n-2-301
kết luậnloạiloạithỏa mãnthỏa mãn

vậy...

8 tháng 7 2017

\(3n+5⋮n+1\)

<=> 3(n+1) + 2 chia hết cho n+1

=>2 chia hết cho n+1

=> n+1 bằng 1 hoặc bằng 2

=> n=0 hoặc n=1

6 tháng 1 2015

1 .                 ( 2x + 1 ) ( y - 1 ) = 12 

Vì ( 2x + 1 ) ( y - 1 ) = 12 nên  2x + 1 là ước của12 .

Ư ( 12 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }

Mà 2x + 1 là số lẻ nên 2x + 1 thuộc { 1 ; 3 }

+)     Nếu 2x + 1 = 1 thì x = 0 

   => y - 1 = 12 => y = 13

+)   Nếu  2x + 1 = 3 thì x = 1

 => y - 1 = 4 => y = 5

 Vậy x = 0 , y = 13

        x = 1 , y = 5

V

14 tháng 12 2019

a) Để  3 n − 3  là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)

=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}

b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}

c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}

Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)