tìm các số tự nhiên n sao cho các phân số sau có giá trị là số nguyên \(\frac{12}{3n-1}\) ; \(\frac{2n+3}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
- Để \(\frac{12}{3n-1}\)là số nguyên \(\Rightarrow\)\(12⋮ 3n-1\)
\(\Rightarrow\)\(3n-1\inƯ\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
- Ta có bảng giá trị:
\(3n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-4\) | \(4\) | \(-6\) | \(6\) | \(-12\) | \(12\) |
\(n\) | \(0\) | \(\frac{2}{3}\) | \(-\frac{1}{3}\) | \(1\) | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | \(-1\) | \(\frac{5}{3}\) | \(-\frac{5}{3}\) | \(\frac{7}{3}\) | \(-\frac{11}{3}\) | \(\frac{13}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) |
Vậy \(n\in\left\{-1; 0; 1\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
để \(\frac{3n+5}{n+1}\)là phân số thì 3n+5\(⋮n+1\)
\(\Rightarrow3n+5=3\left(n+1\right)+2⋮n+1\)
mà\(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)
=>\(n+1\in\left\{-1;-2;1;2\right\}\)
n+1 | -1 | -2 | 1 | 2 |
n | -2 | -3 | 0 | 1 |
kết luận | loại | loại | thỏa mãn | thỏa mãn |
vậy...
1 . ( 2x + 1 ) ( y - 1 ) = 12
Vì ( 2x + 1 ) ( y - 1 ) = 12 nên 2x + 1 là ước của12 .
Ư ( 12 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
Mà 2x + 1 là số lẻ nên 2x + 1 thuộc { 1 ; 3 }
+) Nếu 2x + 1 = 1 thì x = 0
=> y - 1 = 12 => y = 13
+) Nếu 2x + 1 = 3 thì x = 1
=> y - 1 = 4 => y = 5
Vậy x = 0 , y = 13
x = 1 , y = 5
V
a) Để 3 n − 3 là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)
=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}
b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}
c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}
Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Số n là :
1 + 0 = 1
Đáp số : 1
n = 1 và n =2