a. Chứng minh rằng: C = 2 + 22 + 2 + 3 +… + 299 + 2100 chia hết cho 31
b. Tính tổng C. Tìm x để 22x – 1 - 2 = C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
Phần a:
Có 100 số tự nhiên chia làm 20 nhóm từ trái sang phải mỗi nhóm năm số.
\(C=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)+...+2^{96}.\left(1+2+4+8+16\right)\)
\(C=2.31+2^6.31+2^{11}.31+...+2^{96}.31\)
=> C chia hết cho 31.
Chúc em học tốt^^
\(2.C=2^2+2^3+....+2^{101}\)
\(=>2C-C=C=2^2-2^2+2^3-2^3+....+2^{100}-2^{100}+2^{101}-2\)
\(C=2^{101}-2\)
Do đó 2x-1=101
=>x=51
Chúc em học tốt^^
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
a)\(C=2+2^2+2^3+....+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+2^5\left(2+2^2+2^3+2^4+2^5\right)+...+2^{95}\left(2+2^2+2^3+2^4+2^5\right)\)
\(=62+2^5.62+...+2^{95}.62=62\left(1+2^5+...+2^{95}\right)=31.2\left(1+2^5+....+2^{95}\right)⋮31\)
\(\Rightarrow C⋮31\)
=>đccm
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+....+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=31.2+.....+2^{96}.31=31.\left(2+....+2^{96}\right)⋮31\)
Suy ra \(C⋮31\)
b) Ta có \(2.C=2^2+2^3+2^4+....+2^{99}+2^{100}+2^{101}\)
Suy ra \(2.C-C=2^{101}-2\)hay \(C=2^{101}-2\)
Khi đó \(2^{2x-1}-2=2^{101}-2\)
\(\Rightarrow2^{2x-1}=2^{101}\)
\(\Rightarrow2x-1=101\Rightarrow2x=100\Rightarrow x=50\)
Vậy x = 50
a)Ta có: C=2+22+23+...+2100 C=1.(2+22+23+24+25)+25.(2+22+23+24+25)+...+295.(2+22+23+24+25) C=2.31+25.2.31+...+295.2.31 C=31(2+2.25+...+2.295) =>C chia hết cho 31
a)C=2+22+23+...+2100
=2.(1+2+4+8+16)+26.(1+2+4+8+16)+...+296.+(1+2+4+8+16)
=2.31+26.31+...+296.31
=31.(2+26+...+296) chia hết cho 31
C chia hết cho 31
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
a. C = 2 + 22 + 23 + …….. + 299 + 2100
= 2(1 +2 + 22+ 23+ 24) + 26(1 + 2 + 22+ 23+ 24)+…+ (1 + 2 + 22+ 23+ 24).296
= 2 . 31 + 26 . 31 + … + 296 . 31 = 31(2 + 26 +…+296).
Vậy C chia hết cho 31
b. C = 2 + 22 + 23 + …….. + 299 + 2100 à 2C = 22 + 23 + 24 + …+ 2100 + 2101
Ta có 2C – C = 2101 – 2 \(\Rightarrow\) 2101 = 22x-1 \(\Rightarrow\)2x – 1 = 101
\(\Rightarrow\) 2x = 102
\(\Rightarrow x=51\)
nhớ đúng nhé
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn sẽ ko làm như vậy !!!!!