Cho tam giác ABC vuông tại C biết AB = 13 cm AC = 5 cm. Tia phân giác của góc A cắt cạnh BC tại E. kẻ EK vuông góc với AB tại K a, Tính BC. Chứng minh tam giác ACE bằng tam giác AKE b, so sánh CE và BE c, Kẻ CH vuông góc với AB tại H. Chứng mình CK là tia phân giác của góc HCB Cho mình câu trả lời nhanh với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\widehat{A}=60^0\)
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{EBA}+60^0=90^0\)
\(\Leftrightarrow\widehat{EBA}=30^0\)(1)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{EBA}=\widehat{EAB}\)
Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)(cmt)
nên ΔEAB cân tại E(Định lí đảo của tam giác cân)
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB
Xét ΔECA vuông tại C và ΔEDB vuông tại D có
EA=EB
góc AEC=góc BED
=>ΔECA=ΔEDB
=>EC=ED
=>AD=BC
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
a) Xét \(\Delta ACE\) và \(\Delta AKE\) có:
\(\left\{{}\begin{matrix}\widehat{ACE}=\widehat{AKE}=90^o\\AE-\text{cạnh chung}\\\widehat{EAC}=\widehat{EAK}\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow \Delta ACE=\Delta AKE(ch-gn)\)
b) Từ câu a ta có \(\Delta ACE=\Delta AKE\) nên AC = AK, EC = EK. Suy ra AE là đường trung trực của CK.
c) Đề bài sai
d) Ta có EK = EC mà EK < EB (quan hệ giữa đường vuông góc và đường xiên) nên EB > EC.
a, xét tam giác ACE = tam giác AKE có : AE chung
góc ACE = góc AKE = 90
góc CAE = góc KAE do AE là phân giác của góc BAC (gt)
=> tam giác ACE = tam giác AKE (ch-gn)
b, tam giác ABC vuông tại C (Gt)
=> góc BAC = góc ABC = 90 (đl)
mà góc BAC = 60 (gt)
=> góc ABC = 90 - 60 = 30 (1)
AE là phân giác của góc BAC (gt)
=> góc CAE = góc KAE (đn)
=> góc KAE = 1/2*góc BAC
mà góc BAC = 60
=> góc KAE = 1/2*60 = 30 (2)
=> (1)(2) => góc EAK = góc EBK
=> tam giác EBA cân tại E (đn)
a: BC=căn 13^2-5^2=12cm
Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: CE=KE
KE<EB
=>CE<EB
c: góc BCK+góc ACK=90 độ
góc HCK+góc AKC=90 độ
mà góc ACK=góc AKC
nên góc BCK=góc HCK
=>CK là phân giác của góc HCB