số 2^1991 và 5^1991 viết liền nhau tạo thành số có bao nhiêu chữ số ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a là số chữ số của 21991 , b là số chữ số của 51991
ta có: 10a < 21991 < 10a+1
10b < 51991 < 10b+1
=> 10a . 10b < 21991 . 51991 < 10a+1 . 10b +1
=> 10a+b < 101991 < 10a+b+2
=> a + b = 1992
vậy 2 số 21991 và 51991 viết liền nhau tạo ra tất cả 1992 chữ số viết thành số đó
Giải :
Giả sử 21991 có x chữ số , 51991 có y chữ số .
Cần chứng minh rằng x + y = 1992 .
Số tự nhiên nhỏ nhất có x chữ số là 10x-1 . Số tự nhiên nhỏ nhất có x + 1 chữ số là 10x.
Ta có : 10x-1 < 21991< 10x
Tương tự : 10y-1 < 51991 < 10y
Do đó : 10x-1, 10y-1 < 21991, 51991 < 10x , 10y .
=> 10x+y-2 < 101991 < 10x+y
x + y - 2 < 1991 < x + y
Do x + y \(\in\)N nên x + y - 1 = 1991
Do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số .
Số 21991 và 51995 viết liền nhau được số tự nhiên có số chữ số là: 22222222222......22+5555.......555=7777..................777 CÓ 1995 chữ số nguyễn nguyên an
Giải :Giả sử số 21991 có x chữ số , số 51991 có y chữ số . Cần chứng minh rằng x + y = 1992
Số tự nhiên nhỏ nhất có x chữ số là 10 x - 1 , số tự nhiên nhỏ nhất có x + 1 chữ số là 10x , ta có :
10x - 1 < 21991 < 10x . Tương tự 10y - 1 < 51991 < 10y
Do đó 10x - 1 < 21991 . 51991 < 10x . 10y
Suy ra : 10x + y - 2 < 101991 < 10x + y
x + y < 1991 < x + y
Do x + y ∈N nên x + y - 1 = 1991 , do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số (đpcm)
chúc bn học tốt !
Giải . Giả sử số 21991 có x chữ số , số 51991 có y chữ số . Cần chứng minh rằng x + y = 1992 .
Số tự nhiên nhỏ nhất có x chữ số là 10x-1 , số tự nhiên nhỏ nhất có x + 1 chữ số là 10x , ta có :
10x-1 < 21991 < 10x . Tương tự 10y-1 < 51991 < 10y .
Do đó : 10x-1 . 10y-1 < 21991 . 51991 < 10x . 10y .
Suy ra : 10x + y - 2 < 101991 < 10x + y
x + y - 2 < 1991 < x + y
Do x + y € N nên x + y - 1 = 1991 , do đó x + y = 1992 .
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số .
Giải :Giả sử số 21991 có x chữ số , số 51991 có y chữ số . Cần chứng minh rằng x + y = 1992
Số tự nhiên nhỏ nhất có x chữ số là 10 x - 1 , số tự nhiên nhỏ nhất có x + 1 chữ số là 10x , ta có :
10x - 1 < 21991 < 10x . Tương tự 10y - 1 < 51991 < 10y
Do đó 10x - 1 < 21991 . 51991 < 10x . 10y
Suy ra : 10x + y - 2 < 101991 < 10x + y
x + y < 1991 < x + y
Do x + y \(\in\)N nên x + y - 1 = 1991 , do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số \(\left(đpcm\right)\)
giả sử \(2^{1991}\)có x chữ số,số \(5^{1991}\)có y chữ số
=>\(10^{x-1}