K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có : 

\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)

A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2

26 tháng 12 2016

Lớp 1 không có cánh nào phù hợp =>chịu

L

26 tháng 12 2016

Hì hì cứ giải kiểu j cho ra là đc giúp mình vs cái lớp 1 đấy là ấn cho có thui !!!

31 tháng 10 2019

Ta có: \(2x+xy=4\)

\(\Leftrightarrow2x^2+x^2y=4x\)

\(\Leftrightarrow x^2y=4x-2x^2=-2\left(x^2-2x\right)\)

\(=-2\left(x^2-2x+1-1\right)\)

\(=-2\left[\left(x-1\right)^2-1\right]\)

\(=-2\left(x-1\right)^2+2\le2\)

Vậy \(A_{max}=2\Leftrightarrow x-1=0\Leftrightarrow x=1\)

31 tháng 10 2019

https://olm.vn/hoi-dap/detail/71287542505.html

12 tháng 5 2017

Ta có: 

2x+xy=4 

=> xy=4-2x

A=x2y=x.(xy)

=> A=x(4-2x)=4x-2x2

=> A=2-2+4x-2x2 = 2-2(x2-2x+1)

=> A=2-2(x-1)2

Ta thấy: (x-1)2\(\ge\)0 với mọi x

=> A \(\le\)2 với mọi x

=> Giá trị lớn nhất của A là 2

Đạt được khi x-1=0 hay x=1 và y=2

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

NV
9 tháng 4 2021

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)