1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.
a. Chứng minh △AHB và △BCD đồng dạng
b. Chứng minh BC.AB = AH.BD
c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)
2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD
a. Chứng minh: △CBN và △CDM cân
b. Chứng minh: △CBN \(\sim\) △MDN
c. Chứng minh: M,C,N thẳng hàng
3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.
a. Chứng minh: △ABH\(\sim\)△CBA
b. Chứng minh: \(AH^2=BH.HC\)
c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)
Chứng minh BH.CH = HF.HD
3:
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC