TÍNH \(E=\frac{1.98+2.97+...+98.1}{1.2+2.3+...+98.99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt C = 1.2 + 2.3 + 3.4 + ..... +98.99 }\)
\(\text{ Và A = 1.98 + 2.97 + 3.96 + .... + 98.1 }\)
\(\text{Khi đó : }A=1+\left(1+2\right)+....+\left(1+2+...+98\right)\)
\(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{98.99}{2}\)
\(=\frac{1.2+2.3+3.4+....+98.99}{2}=\frac{C}{2}\)
\(\Rightarrow B=\frac{B}{\frac{2}{B}}=\frac{1}{2}\)
a)\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.98+2.97+3.96+....+98.1}\)
\(=\frac{\left(1+1+....+1\right)+\left(2+2+...2\right)+....+\left(97+97\right)+98}{ }\)
\(=\frac{1.98+2.97+3.96+....+97.2+98.1}{1.98+2.97+3.96+....+98.1}=1\)
tử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcm)
B=\(\frac{1.\left(100-2\right)+2.\left(100-3\right)+3.\left(100-4\right)+...+98.\left(100-99\right)}{1.2+2.3+3.4+...+98.99}\)
B=\(\frac{100.\left(1+2+3+...+98\right)-\left(1.2+2.3+3.4+...+98.99\right)}{1.2+2.3+3.4+...+98.99}\)
B=\(\frac{100.\left(1+98\right).98:2}{1.2+2.3+3.4+...+98.99}-\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)
B=\(\frac{50.98.99}{1.2+2.3+3.4+...+98.99}\)
Đặt M = 1.2+2.3+3.4+....+98.99
=> 3M=3.(1.2+2.3+3.4+...+98.99)
=> 3M = 1.2.3+2.3.(4-1)+...+098.99.(100-97)
3M= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.100
3M=98.99.100
=> M = 98.33.100
=> B = \(\frac{50.98.99}{98.33.100}-1=\frac{3}{2}-1=\frac{1}{2}\)
đặt \(B=1.2+2.3+...+98.99\)
đặt \(A=1.98+2.97+...+98.1\)
\(=1+\left(1+2\right)+...+\left(1+2+...+98\right)=\frac{1.2}{2}+\frac{2.3}{2}+...+\frac{98.99}{2}\)
\(=\frac{1.2+2.3+...+98.99}{2}=\frac{B}{2}\)
\(\Rightarrow E=\frac{\frac{B}{2}}{B}=\frac{1}{2}\)