Cho hàm số \(y=\sqrt{x+\sqrt{x^2+1}}\). Tính đạo gàm của hàm số.
A. \(y'=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}}\)
B. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{\sqrt{x^2+1}}\)
C. \(y'=\dfrac{\sqrt{x^2+1}}{2\sqrt{\sqrt{x+\sqrt{x^2+1}}}}\)
D. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)
\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)
\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)