Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC, gọi D là điểm đối xứng của A qua M.
a) Cm: ABDC là hình chữ nhật
b) Gọi E là điểm đối xứng của B qua AC. Cm: A là trung điểm của BE
c) Cm: CEAM là hình thang
d) Cm: CEAD là hình bình hành
e) Kẻ BF vuông góc CE tại F. Cm: góc AFD = 90 độ
f) Kẻ AK vuông góc BC tại K. Gọi O và Q lần lượt là trung điểm AC và AB, OQ cắt AK ở S. Cm: CS vuông góc với EK
a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.
b/ Dễ thấy.
c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE => AECM là hình thang
d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành
e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)
Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM
=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)
Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ
=> góc AFB + góc DFB = góc AFD = 90 độ