Chứng minh rằng K + ( K+1 ) .( K + 2 ) - ( K - 1 ) ×
K ( K + 1 ) - 3K . ( K+ 1) ( VỚI K KHÁC 0 )
TỪ ĐÓ SUY RA CÔNG THỨTÍNH TỔNG
S = 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + ..... + n ( n+ 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)
Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
3S=n(n+1)(n+2)
\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta có:k.(k+1).(k+2)-(k+1).k.(k+1)
= k(k+1)\([\left(k+2\right)-\left(k-1\right)]\)
= k(k+1) \([k+2-k+1]\)
= k(k+1) \([\left(k-k\right)+\left(2+1\right)]\)
=k(k+1).3
=3k(k+1)
Vậy : Với k thuộc N khác 0 ta luôn có :
k.(k+1).(k+2)-(k-1).k.(k+1)=3k.(k+1).