Tìm giá trị nhỏ nhất của các biểu thức sau:
A= I2x-\(\frac{1}{3}\)I+107
B= Ix+\(\frac{3}{5}\)I-\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
Ta có : \(P=5\frac{1}{3}-3\left|2x+7\right|\)
Vì : \(3\left|2x+7\right|\ge0\forall x\in R\)
Nên : \(-3\left|2x+7\right|\le0\forall x\in R\)
Suy ra : \(P=5\frac{1}{3}-3\left|2x+7\right|\le5\frac{1}{3}\forall x\in R\)
Vậy GTLN của biểu thức là : \(5\frac{1}{3}\) tại \(x=-\frac{7}{2}\)
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)
\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)
\(\Rightarrow2x-\frac{1}{3}=0\)
\(\Rightarrow2x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{6}\)
Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)
b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)
\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)
\(\Rightarrow x+\frac{3}{5}=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)