tìm giá trị x,y nhỏ nhất của biểu thức
A=l x - 1,3 l - 4,8 + l y - 4 l
tim x
30% của x bằng \(3\frac{1}{5}\)
\(\frac{2}{7}\)cua x bang \(\frac{36}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1,3\right|\ge0\\ \left|y-2,1\right|\ge0\)
\(\Rightarrow A=\left|x-1,3\right|-4,8+\left|y-2,1\right|\ge0-4,8+0=-4,8\)
\(\Rightarrow A=-4,8\) khi \(x-1,3=0\) và \(y-2,1=0\) hay \(x=1,3\) và \(y=2,1\)
Ta có : \(4P=\frac{16}{x}+\frac{1}{y}\ge\frac{\left(4+1\right)^2}{x+y}=\frac{25}{\frac{5}{4}}=20\)
\(\Rightarrow P\ge5\)
Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}x+y=\frac{5}{4}\\\frac{4}{x}=\frac{1}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....