Tìm x,y,z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}=\frac{2z+14+2x+2}{9+6}=\frac{2.\left(x+z\right)+16}{15}=\frac{2.y+16}{15}\)
\(=\frac{y-2}{5}\)
=> (2.y + 16).5 = (y - 2).15
=> 10y + 80 = 15y - 30
=> 80 + 30 = 15y - 10y
=> 110 = 5y
=> y = 110 : 5 = 22
Thay y = 22 vào đề bài ta có: \(\frac{x+1}{3}=\frac{22-2}{5}=4\)
=> x + 1 = 4.3 = 12
=> x = 12 - 1 = 11
Lại có: x + z = y
=> 11 + z = 22
=> z = 22 - 11 = 11
Vậy x = 11; y = 22; z = 11
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
2) Theo đề được: \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{5x}{25}=\frac{3y}{21}\)
Áp dụng t/c dãy tỉ số = nhau được:
\(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{3x-4y}{15-28}=\frac{3x-4y}{-13}\)
và \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{2z+3y-5x}{18+21-25}=\frac{2z+3y-5x}{14}\)
Vì \(\frac{3x-4y}{-13}=\frac{2z+3y-5x}{14}\) nên \(\frac{3x-4y}{2z+3y-5x}=\frac{-13}{14}\)
1) Ta có: \(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\) hay\(\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
Do đó: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2\) hay \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
=> x=1 ; y=2 ; z=3
Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k
thay vào cái thứ 2 rồi rút gọn tính dc k;
thay ngược lại tìm x;y;z