K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2015

\(\frac{a}{n\left(n+a\right)}\)

=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)

=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)

Rút gọn, ta được:

\(\frac{1}{n}\)\(-\frac{1}{n+a}\)

=>đpcm

 

A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{100}\)

A=\(\frac{50}{100}-\frac{1}{100}\)

A=\(\frac{49}{100}\)

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

25 tháng 4 2017

B= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100

B=1/1-1/100

B=99/100

K cho mk nha bn, mơn

25 tháng 4 2017

lấy máy tính bấm cũng được:\(\frac{99}{100}\)

2 tháng 9 2015

a) không biết

b) B = 1.2 + 2.3 + 3.4 + ... + 99.100

3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

      = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)

      = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101

      = 99.100.101 = 999900

3.B = 999900

B = 333300

2 tháng 9 2015

333300                     

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)

 

16 tháng 3 2017

a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N      n khác 0

b) A=1/1*2+1/2*3+1/3*4+...+1/9.10

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

A=1-1/10=9/10

Vậy A = 9/10

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

9 tháng 7 2015

a,A = 1+2+3+…+(n-1)+n

A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3

A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3

A = 99.100.101 A = 333300

Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3

25 tháng 9 2018

a,số hạng của tổng là mở ngoặc 2n-1  đóng ngoặc chia 2+1                                                                                                                               = mở ngoặc 2n-2 chia 2+1                                                                                                                                                                                   = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1                                                                                                                                                       = n-1+1=n vậy tổng  là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ  chia  = n nhân  mũ  chia  = n