Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BE vuông góc với AC (E thuộc AC), CD vuông góc với AB (D thuộc AB). Gọi I là giao điểm của BE và CD. a/ Chứng minh rằng: ∆ADC = ∆AEB b/ Chứng minh AI là tia phân giác của góc BAC c/chứng minh bi>ie d/ trên tia đối của tia ba lấy điểm f sao cho bf=bd è cắt bc tại k chứng minh k là trung điểm của ef
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)