K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

\(A=\frac{2n+7}{n+1}=\frac{n+1}{n+1}+\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(2+\frac{5}{n+1}\)


 => \(\left(n+1\right)\in U\left(5\right)\)

=>

n+15-51-1
n4-60-2

Tíc mình nha!Kim Phương

2 tháng 10 2018

\(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để A nguyên thì \(\frac{5}{n+1}\)nguyên \(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\Rightarrow n+1\in5,1,-5,-1\)(nhớ ngoặc nhọn nha)

\(\Rightarrow n\in4,0,-6,-1\)

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

6 tháng 3 2018

để M là số nguyên 

\(\Rightarrow2n-7⋮n-5\Rightarrow2\left(n-5\right)+3.\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left[\pm1;\pm3\right]\Rightarrow\)

+n - 5 = -1 \(\Rightarrow\)n = 4

+n - 5 = -3 \(\Rightarrow\)n = 2

+n - 5 = 1 \(\Rightarrow\)n = 6

+n - 5 = 3 \(\Rightarrow\)n = 8

6 tháng 3 2018

Để M là số nguyên

=> M thuộc Z

=> \(\frac{2n-7}{n-5}\)Thuộc Z

=> 2n - 7 \(⋮\)n - 5

=> 2n - 10 + 3 \(⋮\)n - 5

=> 2.( n - 5 ) + 3 \(⋮\)n - 5 mà 2 . ( n - 5 ) \(⋮\)n - 5 => 3 \(⋮\)n - 5

=> n - 5 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }

=> n thuộc { - 2 ; 4 ; 6 ; 8 }

Vậy n thuộc { - 2 ; 4 ; 6 ; 8 }

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

28 tháng 5 2018

Ta có :

\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)

để A \(\in\)\(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

2n-31-12-23-36-6
n215/21/2309/2-3/2

vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }

28 tháng 5 2018

Ta có :  \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)

Để  \(A\in N\) thì  \(\frac{6}{2n-3}\in N\)

\(\Rightarrow6⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

2n-31-12-23-36-6
2n4251609-3
n212,50,5304,5-1,5

Vậy ...

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)