K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021
10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

12 tháng 11 2021

 

  
20 tháng 3 2021

ummmms

22 tháng 8 2021

a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b)  Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.

Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
^OEH=^OHE=^KHC^MEC=^MCE.
mà ^KHC+^MCE=90o.
Suy ra: ^OEH+^MEC=90o nên OEEM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.1. Chứng minh tứ giác CEHD nội tiếp .2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.3. Chứng minh ED = 1/2 BC.4. Chứng minh DE là tiếp tuyến của đường tròn (O).5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua...
Đọc tiếp

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.

1. Chứng minh tứ giác CEHD nội tiếp .

2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Chứng minh ED = 1/2 BC.

4. Chứng minh DE là tiếp tuyến của đường tròn (O).

5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.

Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:

1. AC + BD = CD

2. Góc COD = 900

3. AC.BD = 1/4 AB2

4. OC // BM

5. AB là tiếp tuyến của đường tròn đường kính CD.

6. MN vuông góc AB.

7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.

0
22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)

17 tháng 12 2017

a, Gọi O là trung điểm của AH thì OE = OA = OH = OD

b, HS tự làm

16 tháng 9 2019

HS tự làm

22 tháng 3 2021

a) Xét (O,R)(O,R) đường kính BCBC có

ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)

⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o

Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o

⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)

Tâm II là trung điểm của AHAH.

b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:

 ˆAEH=ˆBDH=90oAEH^=BDH^=90o

ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)

⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)

⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ) 

Mà HA=2HIHA=2HI

⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI

c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a

⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II

⇒ˆIEH=ˆIHE⇒IEH^=IHE^

ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)

Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^

ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)

⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)

⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).

Chứng minh tương tự

ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^

ˆHFO=ˆOCHHFO^=OCH^

⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o

⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)

image