K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

ta có 2x2+2y2=5xy

=>2(x+y)2=9xy và 2(x-y)2=xy

M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)

vậy M=3 hoặc M=-3

25 tháng 9 2016

Ta dùng phương pháp tách đa thức thành nhân tử ta được

=> x+y=2x2+2y2=2(x2+y2)=9xy

=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy

=>M=(x+y)2/(x-y)2=9xy:xy=9

Nên M= cộng trừ căn bậc 2 của 9

2x2 + 2y2 = 5xy

=> 2x2 + 2y2 - 5xy = 0

=> (x - 2y)(2x - y)   = 0 

x = 2y (loại)

y = 2x

E = \(\dfrac{x+2x}{x-2x}\)=-3

27 tháng 1 2019

Đáp án B.

Ta có  4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y

⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .

Suy ra  x y ≤ x + y 2 2 = 1

Khi đó

P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y

≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y

= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18

Vậy Pmax = 18 khi x = y = 1.

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

30 tháng 6 2019

Đáp án C

14 tháng 4 2017

8 tháng 8 2019

11 tháng 11 2018

Ta có y= 3-x≥ 1 nên x≤ 2 do đó : x

Khi đó P= x3+ 2( 3-x) 2+ 3x2+4x( 3-x) -5x= x3+x2-5x+18

Xét hàm số f(x) = x3+x2-5x+18  trên đoạn [0 ; 2] ta có:

f ' ( x ) = 3 x 2 + 2 x - 5 ⇒ f ' ( x ) = 0 x ∈ ( 0 ; 2 ) ⇔

F(0) =18; f(1) = 15; f(2) =20

Vậy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  lần lượt bằng 20 và 15.

Chọn B.