K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

a, ta có √(92+122)=15 nên theo định lý đảo của định lý pitago => ∠BAC=90 độ

Xét △ADB và △CAB có:

∠BAC=∠BDA(=90 độ), ∠ACB chung => △ADB ∼ △CAB (g.g) (1)

b, BE là đường phân giác của △ABC => \(\dfrac{AB}{AE}=\dfrac{BC}{EC}\)

Gọi AE= x (cm) => EC=12-x (cm)

Ta có: \(\dfrac{9}{x}=\dfrac{15}{12-x}\)=> 108-9x=15x =>108=24x => x=4,5 

Vậy EA=4,5 cm, EC=12-4,5=7,5 cm

c, Xét △CAB và △CDA có:

∠BCD chung, ∠ADC=∠BAC(=90 độ) => △CAB ∼ △CDA (g.g) (2)

Từ (1),(2) => △ADB ∼ △CDA (T/c bắc cầu)

=> \(\dfrac{AD}{CD}=\dfrac{DB}{AD}\) => AD2=BD.DC

d, SABC=\(\dfrac{1}{2}.AB.AC\)=\(\dfrac{1}{2}AD.BC\)

=> AB.AC=AD.BC => AD = \(\dfrac{9.12}{15}\)=7,2 cm

Áp dụng định lí Pitago vào △ADC vuông tại D:

AC2=AD2+DC2 => DC=√[122-(7,2)2]=9,6 cm

=> BD=BC-DC=15-9,6=5,4 cm

BI là đường phân giác của △ABD => \(\dfrac{AB}{AI}=\dfrac{BD}{DI}\)

Gọi ID=y (cm) => AI=7,2-y (cm)

Ta có: \(\dfrac{9}{7,2-y}=\dfrac{5,4}{y}\)=> 9y=38,88-5,4y => 14,4y=38,88 => y = 2,7

Nên ID=2,7 cm

 

 

 

6 tháng 4 2021

undefined

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

9 tháng 5 2022

undefined

a) Xét △ABD và △CBE có:

\(\widehat{ADB}=\widehat{BEC}=90^o\)

\(\widehat{B}chung\)

Nên △ABD ∼ △CBE(g.g)

b)Theo câu a, ta có: △ABD ∼ △CB E 

<=>\(\dfrac{AB}{BC}=\dfrac{BD}{BE}\Leftrightarrow AB.BE=BD.BC\)

c)Ta có:

\(BE=\dfrac{BD.BC}{AB}=\dfrac{3.12}{9}=4\left(cm\right)\)

 

9 tháng 5 2022

cảm ơn

 

a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có

góc B chung

=>ΔADB đồng dạng với ΔCAB

b: BC=căn 12^2+9^2=15cm

AD=12*9/15=7,2cm

26 tháng 4 2023

a) Xét ΔCHA và ΔCAB ta có:

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta CHA\)\(\Delta CAB\left(g.g\right)\)

b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)

             \(=20^2-16^2\)

             \(=144\)

\(\Rightarrow AB=\sqrt{144}=12cm\)

vì ΔCHA∼ΔCAB(cmt)

\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)

Suy ra:

\(AH=\dfrac{12.4}{5}=9,6cm\)

\(CH=\dfrac{16.4}{5}=12,8cm\)

Xét ΔAHC có AD là phân giác ta có:

\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)

\(\Rightarrow DC=\dfrac{16}{2}=8cm\)